Solving partial differential equations by collocation using radial basis functions

被引:367
作者
Franke, C [1 ]
Schaback, R [1 ]
机构
[1] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
基金
新加坡国家研究基金会;
关键词
D O I
10.1016/S0096-3003(97)10104-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After a series of application papers have proven the approach to be numerically effective, this paper gives the first theoretical foundation for methods solving partial differential equations by collocation with (possibly radial) l,asis functions. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 18 条
[1]  
BRAESS D, 1986, NONLINEAR APPOXIMATI
[2]  
DUBAL MR, 1994, J APPL SCI COMPUT, V1, P146
[3]  
DUBAL MR, 1992, SOLUTION ELLIPTIC EQ, P265
[4]  
DYN N, 1997, VARIATIONAL PRINCIPL
[5]  
FASSHAUER G, 1996, CHAM P VAND
[6]   Recent developments in the numerical evaluation of particular solutions in the boundary element method [J].
Goldberg, M .
APPLIED MATHEMATICS AND COMPUTATION, 1996, 75 (01) :91-101
[7]   On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions [J].
Iske, A ;
Sonar, T .
NUMERISCHE MATHEMATIK, 1996, 74 (02) :177-201
[9]  
Moridis G., 1994, J APPL SCI COMPUTATI, V1, P375
[10]  
NARDINI D, 1983, NEW APPROACH FREE VI