On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions

被引:38
作者
Iske, A [1 ]
Sonar, T [1 ]
机构
[1] DLR GOTTINGEN,ABT NUMER METHODEN,INST STROMUNGSMECH,D-37073 GOTTINGEN,GERMANY
关键词
D O I
10.1007/s002110050213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis functions are used in the recovery step of finite volume methods for the numerical solution of conservation laws. Being conditionally positive definite such functions generate optimal recovery splines in the sense of Micchelli and Rivlin in associated native spaces. We analyse the solvability to the recovery problem of point functionals from cell average values with radial basis functions. Furthermore, we characterise the corresponding native function spaces and provide error estimates of the recovery scheme, Finally, we explicitly list the native spaces to a selection of radial basis functions, thin plate splines included, before we provide some numerical examples of our method.
引用
收藏
页码:177 / 201
页数:25
相关论文
共 35 条
[1]  
[Anonymous], APPROXIMATION THEORY
[2]  
Bruhn G., 1985, MATH METHOD APPL SCI, V7, P470
[3]   TRIANGLE BASED ADAPTIVE STENCILS FOR THE SOLUTION OF HYPERBOLIC CONSERVATION-LAWS [J].
DURLOFSKY, LJ ;
ENGQUIST, B ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) :64-73
[4]  
Dyn N., 1989, APPROXIMATION THEORY, VVI, P211, DOI DOI 10.1007/BF01203417
[5]  
Dyn N., 1987, Topics in Multivariate Approximation, P47, DOI 10.1016/B978-0-12-174585-1.50009-9
[6]  
Federer H., 1969, GRUNDLEHREN MATH WIS, V153
[7]   A NEW METHOD FOR GENERATING INNER POINTS OF TRIANGULATIONS IN 2 DIMENSIONS [J].
FRIEDRICH, O .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 104 (01) :77-86
[8]  
Golomb M, 1959, NUMERICAL APPROXIMAT
[9]  
Harten A., 1991, 9176 ICASE
[10]  
HIRSCH C, 1990, NUMERICAL COMPUTATIO