On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions

被引:38
作者
Iske, A [1 ]
Sonar, T [1 ]
机构
[1] DLR GOTTINGEN,ABT NUMER METHODEN,INST STROMUNGSMECH,D-37073 GOTTINGEN,GERMANY
关键词
D O I
10.1007/s002110050213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis functions are used in the recovery step of finite volume methods for the numerical solution of conservation laws. Being conditionally positive definite such functions generate optimal recovery splines in the sense of Micchelli and Rivlin in associated native spaces. We analyse the solvability to the recovery problem of point functionals from cell average values with radial basis functions. Furthermore, we characterise the corresponding native function spaces and provide error estimates of the recovery scheme, Finally, we explicitly list the native spaces to a selection of radial basis functions, thin plate splines included, before we provide some numerical examples of our method.
引用
收藏
页码:177 / 201
页数:25
相关论文
共 35 条
[31]  
Synge J.L., 1957, HYPERCIRCLE MATH PHY
[32]  
TRAUB JF, 1980, GENERAL THEORY OPTIM
[33]  
VANKEIRSBILCK P, 1993, THESIS KATHOLIEKE U
[34]   THE NUMERICAL-SIMULATION OF TWO-DIMENSIONAL FLUID-FLOW WITH STRONG SHOCKS [J].
WOODWARD, P ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :115-173
[35]   LOCAL ERROR-ESTIMATES FOR RADIAL BASIS FUNCTION INTERPOLATION OF SCATTERED DATA [J].
WU, ZM ;
SCHABACK, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :13-27