Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications

被引:80
作者
Chang, Young-Wook [1 ]
Wang, Erdong
Shin, Geurnsig
Han, Jung-Eun
Mather, Patrick T.
机构
[1] Hanyang Univ, Dept Chem Engn, Ansan 426791, South Korea
[2] Case Western Reserve Univ, Cleveland, OH 44106 USA
关键词
poly(vinyl alcohol) (PVA); sulfonated polyhedral oligosilsesquioxane (sPOSS); membrane; direct methanol fuel cell (DMFC);
D O I
10.1002/pat.913
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Organic/inorganic hybrid membranes based on poly(vinyl alcohol) (PVA) and sulfonated polyhedral oligosilsesquioxane (sPOSS), crosslinked by ethylenediaminetetraacetic dianhydride (EDTAD), were prepared as candidate materials for proton exchange membranes in direct methanel fuel cell (DMFC) applications. Fourier transform infrared (FT-IR) spectroscopy and ion exchange capacity measurements for the prepared networks clearly revealed sPOSS incorporation. We found that proton conductivity increased and methanol permeability decreased with increasing sPOSS content in the hybrid membrane. In particular, our hybrid membranes demonstrated proton conductivities as high as 0.042 S/cm, which is comparable to that of Nafion (TM), while exhibiting two orders of magnitude lower methanol permeability as compared to Nafion (TM). We postulate that the polar sulfonic acid groups of the incorporated sPOSS cages assemble to provide ion conduction paths while the hydrophobic portions of the same sPOSS cages combine to form a barrier to methanol permeation with improved thermal stability of the hybrid membrane. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:535 / 543
页数:9
相关论文
共 25 条
[1]   Transport of methanol and water through Nafion membranes [J].
Barragán, VM ;
Ruiz-Bauzá, C ;
Villaluenga, JPG ;
Seoane, B .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :22-29
[2]   Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells [J].
Chang, HY ;
Lin, CW .
JOURNAL OF MEMBRANE SCIENCE, 2003, 218 (1-2) :295-306
[3]  
DRIOLI E, 2003, J MEMBRANE SCI, V226, P159
[4]   Novel sulfonated polyimides as polyelectrolytes for fuel cell application.: 1.: Synthesis, proton conductivity, and water stability of polyimides from 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid [J].
Fang, JH ;
Guo, XX ;
Harada, S ;
Watari, T ;
Tanaka, K ;
Kita, H ;
Okamoto, K .
MACROMOLECULES, 2002, 35 (24) :9022-9028
[5]   Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J].
Guo, QH ;
Pintauro, PN ;
Tang, H ;
O'Connor, S .
JOURNAL OF MEMBRANE SCIENCE, 1999, 154 (02) :175-181
[6]   Methanol crossover in direct methanol fuel cells: a link between power and energy density [J].
Gurau, B ;
Smotkin, ES .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :339-352
[7]   Novel proton-conducting polymer electrolyte membranes based on PVA/PAMPS/PEG400 blend [J].
Hamaya, Takeo ;
Inoue, Satoko ;
Qiao, Jinli ;
Okada, Tatsuhiro .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :311-314
[8]   Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells [J].
He, Ronghuan ;
Li, Qingfeng ;
Bach, Anders ;
Jensen, Jens Oluf ;
Bjerrum, Niels J. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 277 (1-2) :38-45
[9]   Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes [J].
Kim, DS ;
Park, HB ;
Rhim, JW ;
Lee, YM .
SOLID STATE IONICS, 2005, 176 (1-2) :117-126
[10]   Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications [J].
Kim, DS ;
Park, HB ;
Rhim, JW ;
Lee, YM .
JOURNAL OF MEMBRANE SCIENCE, 2004, 240 (1-2) :37-48