Balanced 0, ± 1 matrices I.: Decomposition

被引:18
作者
Conforti, M
Cornuéjols, G
Kapoor, A
Vuskovic, K
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Carnegie Mellon Univ, GSIA, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
基金
美国国家科学基金会;
关键词
balanced matrix; decomposition; recognition algorithm; 2-join; 6-join; extended star cutset;
D O I
10.1006/jctb.2000.2010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 0, +/-1 matrix is balanced if, in every square submatrix with two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends decomposition of balanced 0, 1 matrices obtained by Conforti, Cornuejols, and Rao (1999, J. Combin. Theory Ser. B77, 292-406) to the class of balanced 0, +/-1 matrices. As a consequence, we obtain a polynomial time algorithm fur recognizing balanced 0, +/- matrices. (C) 2001 Academic Press.
引用
收藏
页码:243 / 274
页数:32
相关论文
共 18 条
[11]   A COMBINATORIAL DECOMPOSITION-THEORY [J].
CUNNINGHAM, WH ;
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03) :734-765
[12]  
Fulkerson D. R., 1974, MATH PROGRAMMING STU, V1, P120
[13]  
Georgakopoulos G., 1988, Journal of Complexity, V4, P1, DOI 10.1016/0885-064X(88)90006-4
[14]  
GHOUILAHOURI A, 1962, CR HEBD ACAD SCI, V254, P1192
[15]   DECOMPOSITION OF REGULAR MATROIDS [J].
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (03) :305-359
[17]  
Truemper K., 1992, Matroid decomposition
[18]  
TRUEMPER K, 1990, 3490 UTDCS