Effective Heat Transfer Properties of Graphene Sheet Nanocomposites and Comparison to Carbon Nanotube Nanocomposites

被引:37
作者
Bui, Khoa [1 ,2 ]
Duong, Hai M. [3 ]
Striolo, Alberto [1 ,2 ]
Papavassiliou, Dimitrios V. [1 ,2 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
[2] Univ Oklahoma, Carbon Nanotube Technol Ctr CANTEC, Norman, OK 73019 USA
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117548, Singapore
关键词
THERMAL-CONDUCTIVITY; TRANSPORT; COMPOSITES; CHANNEL;
D O I
10.1021/jp109978x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By incorporating nanoinclusions (carbon nanotubes, graphene sheets) with exceptional thermal conductivity into a polymer matrix, one would expect to improve the heat performance of resulting nanocomposites. However, the effective thermal conductivity of carbon-based nanocomposites is strongly influenced by the Kapitza interfacial resistance. In this study, a comparison between carbon nanotubes and graphene sheet nanocomposites that takes into account dispersion patterns of the nanoinclusions and the Kapitza resistance is performed by means of a Monte Carlo simulation. It is found that graphene-based nanocomposites can be more efficient thermal conductors than carbon nanotube ones not only because of smaller KaPitza resistance but also because of the geometry of the graphene sheet When the Kapitza resistance is reduced by appropriate functionalization of the graphene sheets and when the graphene sheet inclusions yield nematic patterns, our calculations suggest the possibility of obtaining composite materials with effective thermal conductivity up to 350 times larger in the direction parallel to the graphene sheets than in the direction perpendicular to them.
引用
收藏
页码:3872 / 3880
页数:9
相关论文
共 49 条
[11]   Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites [J].
Duong, Hai M. ;
Yamamoto, Namiko ;
Papavassiliou, Dimitrios V. ;
Maruyama, Shigeo ;
Wardle, Brian L. .
NANOTECHNOLOGY, 2009, 20 (15)
[12]   Calculated Thermal Properties of Single-Walled Carbon Nanotube Suspensions [J].
Duong, Hai M. ;
Papavassiliou, Dimitrios V. ;
Mullen, Kieran J. ;
Wardle, Brian L. ;
Maruyama, Shigeo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (50) :19860-19865
[13]   Random walks in nanotube composites: Improved algorithms and the role of thermal boundary resistance [J].
Duong, HM ;
Papavassiliou, DV ;
Lee, LL ;
Mullen, KJ .
APPLIED PHYSICS LETTERS, 2005, 87 (01)
[15]   Electronic structures of graphene edges and nanographene [J].
Enoki, Toshiaki ;
Kobayashi, Yousuke ;
Fukui, Ken-Ichi .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) :609-645
[16]   Single-layer graphene nanosheets with controlled grafting of polymer chains [J].
Fang, Ming ;
Wang, Kaigang ;
Lu, Hongbin ;
Yang, Yuliang ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (10) :1982-1992
[17]   Joining prepreg composite interfaces with aligned carbon nanotubes [J].
Garcia, Enrique J. ;
Wardle, Brian L. ;
Hart, A. John .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2008, 39 (06) :1065-1070
[18]   Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ [J].
Garcia, Enrique J. ;
Wardle, Brian L. ;
Hart, A. John ;
Yamamoto, Namiko .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (09) :2034-2041
[19]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[20]   Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study [J].
Hu, Jiuning ;
Schiffli, Stephen ;
Vallabhaneni, Ajit ;
Ruan, Xiulin ;
Chen, Yong P. .
APPLIED PHYSICS LETTERS, 2010, 97 (13)