Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts

被引:213
作者
Soffer, Leah [1 ]
Wang, Xianyan [2 ]
Zhang, Xiaohui [2 ,3 ]
Kluge, Jonathan [2 ]
Dorfmann, Luis [4 ]
Kaplan, David L. [2 ,3 ]
Leisk, Gary [1 ]
机构
[1] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA
[2] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[3] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA
[4] Tufts Univ, Dept Civil & Environm Engn, Medford, MA 02155 USA
关键词
electrospinning; silk fibroin; nanofibrous tubular scaffold; characterization;
D O I
10.1163/156856208784089607
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electrospinning was used to fabricate non-woven nanofibrous tubular scaffolds from Bombyx mori silk fibroin using an all aqueous process. Cell studies and mechanical characterization tests were performed on the electrospun silk tubes to assess the viability of their usage in bioengineering small-diameter vascular grafts. Human endothelial cells and smooth muscle cells were successfully cultured on the electrospun silk. Mechanical characterization tests demonstrated burst strength sufficient to withstand arterial pressures and tensile properties comparable to native vessels. These cellular and mechanics outcomes demonstrate potential utility of these electrospun silk scaffolds for small-diameter vascular grafts.
引用
收藏
页码:653 / 664
页数:12
相关论文
共 32 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Regeneration of Bombyx mori silk by electrospinning.: Part 3:: characterization of electrospun nonwoven mat [J].
Ayutsede, J ;
Gandhi, M ;
Sukigara, S ;
Micklus, M ;
Chen, HE ;
Ko, F .
POLYMER, 2005, 46 (05) :1625-1634
[3]   Viscoelastic testing methodologies for tissue engineered blood vessels [J].
Berglund, JD ;
Nerem, RM ;
Sambanis, A .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (07) :1176-1184
[4]   Electrospinning collagen and elastin: Preliminary vascular tissue engineering [J].
Boland, ED ;
Matthews, JA ;
Pawlowski, KJ ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 :1422-1432
[5]   Electrospinning of collagen and elastin for tissue engineering applications [J].
Buttafoco, L ;
Kolkman, NG ;
Engbers-Buijtenhuijs, P ;
Poot, AA ;
Dijkstra, PJ ;
Vermes, I ;
Feijen, J .
BIOMATERIALS, 2006, 27 (05) :724-734
[6]   Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures [J].
Cummings, CL ;
Gawlitta, D ;
Nerem, RM ;
Stegemann, JP .
BIOMATERIALS, 2004, 25 (17) :3699-3706
[7]   Tissue engineering of small caliber vascular grafts [J].
Hoerstrup, SP ;
Zünd, G ;
Sodian, R ;
Schnell, AM ;
Grünenfelder, J ;
Turina, MI .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2001, 20 (01) :164-169
[8]   In vitro degradation of silk fibroin [J].
Horan, RL ;
Antle, K ;
Collette, AL ;
Huang, YZ ;
Huang, J ;
Moreau, JE ;
Volloch, V ;
Kaplan, DL ;
Altman, GH .
BIOMATERIALS, 2005, 26 (17) :3385-3393
[9]   Mechanical responses of a compliant electrospun poly(L-lactide-co-ε-caprolactone) small-diameter vascular graft [J].
Inoguchi, H ;
Kwon, IK ;
Inoue, E ;
Takamizawa, K ;
Maehara, Y ;
Matsuda, T .
BIOMATERIALS, 2006, 27 (08) :1470-1478
[10]   Human bone marrow stromal cell responses on electrospun silk fibroin mats [J].
Jin, HJ ;
Chen, JS ;
Karageorgiou, V ;
Altman, GH ;
Kaplan, DL .
BIOMATERIALS, 2004, 25 (06) :1039-1047