On the mutual information and low-SNR capacity of memoryless noncoherent Rayleigh-fading channels

被引:1
作者
de Ryhove, Sebastien de la Kethulle [1 ,3 ]
Marina, Ninoslav [2 ,4 ,5 ]
Oien, Geir E. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
[2] Swiss Fed Inst Technol EFPL, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Nippon Telegraph & Tel Corp, Commun Sci Lab, Kyoto, Japan
[4] Nokia Res Ctr, Radiocommun Lab, Helsinki, Finland
[5] Ecole Polytech Fed Lausanne, Signal Proc Inst, Lausanne, Switzerland
关键词
capacity; capacity lower bound; hypergeometric function; hypergeometric series; memoryless channel; mutual information; noncoherent communication channel; Rayleigh-fading channel;
D O I
10.1109/TIT.2008.924708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The memoryless noncoherent single-input-single-output (SISO) Rayleigh-fading channel is considered. Closed-form expressions are derived for the mutual information between the output and the input of this channel when the input magnitude distribution is discrete and is restricted to having two mass points. It is subsequently shown how these expressions can be used to obtain closed-form expressions for the capacity of this channel for signal to noise ratio (SNR) values of up to approximately 0 dB, and a tight capacity lower bound for SNR values between 0 dB and 10 dB. The expressions for the channel capacity and its lower bound are given as functions of a parameter which can be obtained via numerical root-finding algorithms.
引用
收藏
页码:3221 / 3231
页数:11
相关论文
共 22 条
[1]   The capacity of discrete-time memoryless Rayleigh-Fading channels [J].
Abou-Faycal, IC ;
Trott, MD ;
Shamai, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1290-1301
[2]  
BAILEY W, 1972, GEN HYPERGEOMETRIC S
[3]   On fixed input distributions for noncoherent communication over high-SNR Rayleigh-fading channels [J].
Chen, RR ;
Hajek, B ;
Koetter, R ;
Madhow, U .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3390-3396
[4]  
Conway J.B, 1973, FUNCTIONS ONE COMPLE, V11
[5]  
Cover TM, 2006, Elements of Information Theory
[6]  
DELAKETHULLE S, 2006, P 7 IEEE WORKSH SIGN
[7]   Computing the hypergeometric function [J].
Forrey, RC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 137 (01) :79-100
[8]  
Gradshteyn I. S., 2000, TABLE INTEGRALS SERI
[9]   NEW PROPERTIES OF HYPERGEOMETRIC-SERIES DERIVABLE FROM FEYNMAN-INTEGRALS .2. A GENERALIZATION OF THE H FUNCTION [J].
INAYATHUSSAIN, AA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13) :4119-4128
[10]   NEW PROPERTIES OF HYPERGEOMETRIC-SERIES DERIVABLE FROM FEYNMAN-INTEGRALS .1. TRANSFORMATION AND REDUCTION FORMULAS [J].
INAYATHUSSAIN, AA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13) :4109-4117