High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity

被引:213
作者
Kumar, D [1 ]
Klessig, DF [1 ]
机构
[1] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
关键词
D O I
10.1073/pnas.0307162100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salicylic acid (SA) is a critical hormone for signaling innate immunity in plants. Here we present the purification and characterization of SA-binding protein 2 (SABP2), a tobacco protein that is present in low abundance and specifically binds SA with high affinity. Sequence analysis predicted that SABP2 is a lipase belonging to the alpha/beta fold hydrolase super family. Confirming this prediction, recombinant SABP2 exhibited lipase activity against several synthetic substrates. Moreover, this lipase activity was stimulated by SA binding and may generate a lipid-derived signal. Silencing of SABP2 expression suppressed local resistance to tobacco mosaic virus, induction of pathogenesis-related 1 (PR-1) gene expression by SA, and development of systemic acquired resistance. Together, these results suggest that SABP2 is an SA receptor that is required for the plant immune response. We further propose that SABP2 belongs to a large class of ligand-stimulated hydrolases involved in stress hormone-mediated signal transduction.
引用
收藏
页码:16101 / 16106
页数:6
相关论文
共 45 条
[11]   Salicylate, superoxide synthesis and cell suicide in plant defence [J].
Draper, J .
TRENDS IN PLANT SCIENCE, 1997, 2 (05) :162-165
[12]   Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco [J].
Du, H ;
Klessig, DF .
PLANT PHYSIOLOGY, 1997, 113 (04) :1319-1327
[13]   INHIBITION OF ASCORBATE PEROXIDASE BY SALICYLIC-ACID AND 2,6-DICHLOROISONICOTINIC ACID, 2 INDUCERS OF PLANT DEFENSE RESPONSES [J].
DURNER, J ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :11312-11316
[14]   EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases [J].
Falk, A ;
Feys, BJ ;
Frost, LN ;
Jones, JDG ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3292-3297
[15]   CURRENT STATUS OF GENE-FOR-GENE CONCEPT [J].
FLOR, HH .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1971, 9 :275-+
[16]   REQUIREMENT OF SALICYLIC-ACID FOR THE INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
GAFFNEY, T ;
FRIEDRICH, L ;
VERNOOIJ, B ;
NEGROTTO, D ;
NYE, G ;
UKNES, S ;
WARD, E ;
KESSMANN, H ;
RYALS, J .
SCIENCE, 1993, 261 (5122) :754-756
[17]   Genes controlling expression of defense responses in Arabidopsis -: 2001 status [J].
Glazebrook, J .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (04) :301-308
[18]  
Glazebrook J, 1996, GENETICS, V143, P973
[19]   Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a subset is also ethylene independent [J].
Guo, AL ;
Salih, G ;
Klessig, DF .
PLANT JOURNAL, 2000, 21 (05) :409-418
[20]   Resistance gene-dependent plant defense responses [J].
HammondKosack, KE ;
Jones, JDG .
PLANT CELL, 1996, 8 (10) :1773-1791