Remote sensing of canopy dynamics and biophysical variables estimation of corn in Michigan

被引:37
作者
Elwadie, ME [1 ]
Pierce, FJ
Qi, J
机构
[1] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA
[2] Washington State Univ, Ctr Precis Agr Syst, Prosser, WA 99350 USA
[3] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA
关键词
D O I
10.2134/agronj2005.0099
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Remotely sensed data can aid in estimating biophysical variables of corn (Zea mays L.). This study identifies spectral wavelengths, spectral vegetation indices (SVIs), and timing needed for estimating yield and leaf area index (LAI) for corn. Canopy reflectance (460-810 nm range) was measured periodically in 1999 and 2000 within a field study varying N and irrigation management for corn. Corn grain yield was strongly related to canopy reflectance for either individual wavelengths or for SVIs, reaching an optimum (R-2 > 0.9) at R5 dent stage in both years. Green reflectance based on simple ratio (green simple ratio index, GSRI) had the highest R-2, lowest RMSE, and most consistent slope and intercept between years. In contrast, LAI was best predicted by normalized difference vegetation index (NDVI) (RSME = 0.426) while green normalized difference vegetation index (GNDVI) performed poorly (RMSE = 0.604). Corn grain yield in this study was best predicted at stage R5 using the green simple ratio index.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 27 条