A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation

被引:71
作者
Jakob, Torsten [1 ]
Wagner, Heiko [1 ]
Stehfest, Katja [1 ]
Wilhelm, Christian [1 ]
机构
[1] Univ Leipzig, D-04103 Leipzig, Germany
关键词
alternative electron pathways; diatom; dynamic light; energy balance; FTIR; global warming; nitrate; photosynthesis;
D O I
10.1093/jxb/erm084
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The energy balance of Phaeodactylum tricomutum, cells from photon to biomass have been analysed under nutrient-replete and N-limiting conditions in combination with fluctuating (FL) and non-fluctuating (SL) dynamic light. For this purpose, the amount of photons absorbed has been related to electrons transported by photosystem 11, to gas exchange rates, and to the newly formed biomass differentially resolved into carbohydrates, proteins, and lipids measured by means of Fourier transform infrared (FTIR) spectroscopy. Under high nutrient conditions, the quantum efficiency of carbon-related biomass production ((Phi c) and the metabolic costs of carbon (C) production were found to be strongly controlled by the light climate. Under N-limited conditions, the light climate was less important for the efficieny of primary production. Thus, the largest range of (Phi c dependent on the nutrient status of the cells was observed under non-fluctuating light conditions which are comparable with stratified conditions in the natural environment. It is evident that N limitation induced pronounced changes in the composition of macromolecular compounds and, thus, influenced the degree of reduction of the biomass as well as the metabolic costs of C production. However, (Dc and the metabolic costs are not predictable from the photosynthesis rates. In consequence, the results clearly show that bio-optical methods as well as gas exchange measurements during the light phase can severely mismatch the true energy storage in the biomass especially under high nutrient in combination with non-fluctuating light conditions.
引用
收藏
页码:2101 / 2112
页数:12
相关论文
共 52 条
[1]   Action spectrum and maximum quantum yield of carbon fixation in natural phytoplankton populations: implications for primary production estimates in the ocean [J].
Arbones, B ;
Figueiras, FG ;
Varela, R .
JOURNAL OF MARINE SYSTEMS, 2000, 26 (01) :97-114
[2]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[3]   Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics [J].
Behrenfeld, Michael J. ;
Worthington, Kirby ;
Sherrell, Robert M. ;
Chavez, Francisco P. ;
Strutton, Peter ;
McPhaden, Michael ;
Shea, Donald M. .
NATURE, 2006, 442 (7106) :1025-1028
[4]   Carbon-based ocean productivity and phytoplankton physiology from space [J].
Behrenfeld, MJ ;
Boss, E ;
Siegel, DA ;
Shea, DM .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (01) :1-14
[5]   A consumer's guide to phytoplankton primary productivity models [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (07) :1479-1491
[6]   NITRATE REDUCTASE-ACTIVITY QUANTITATIVELY PREDICTS THE RATE OF NITRATE INCORPORATION UNDER STEADY-STATE LIGHT LIMITATION - A REVISED ASSAY AND CHARACTERIZATION OF THE ENZYME IN 3 SPECIES OF MARINE-PHYTOPLANKTON [J].
BERGES, JA ;
HARRISON, PJ .
LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (01) :82-93
[7]   CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum [J].
Burkhardt, S ;
Riebesell, U .
MARINE ECOLOGY PROGRESS SERIES, 1997, 155 :67-76
[8]   A comparison of global estimates of marine primary production from ocean color [J].
Carr, Mary-Elena ;
Friedrichs, Marjorie A. M. ;
Schmeltz, Marjorie ;
Aita, Maki Noguchi ;
Antoine, David ;
Arrigo, Kevin R. ;
Asanuma, Ichio ;
Aumont, Olivier ;
Barber, Richard ;
Behrenfeld, Michael ;
Bidigare, Robert ;
Buitenhuis, Erik T. ;
Campbell, Janet ;
Ciotti, Aurea ;
Dierssen, Heidi ;
Dowell, Mark ;
Dunne, John ;
Esaias, Wayne ;
Gentili, Bernard ;
Gregg, Watson ;
Groom, Steve ;
Hoepffner, Nicolas ;
Ishizaka, Joji ;
Kameda, Takahiko ;
Le Quere, Corinne ;
Lohrenz, Steven ;
Marra, John ;
Melin, Frederic ;
Moore, Keith ;
Morel, Andre ;
Reddy, Tasha E. ;
Ryan, John ;
Scardi, Michele ;
Smyth, Tim ;
Turpie, Kevin ;
Tilstone, Gavin ;
Waters, Kirk ;
Yamanaka, Yasuhiro .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2006, 53 (5-7) :741-770
[9]   The large capacity for dark nitrate-assimilation in diatoms may overcome nitrate limitation of growth [J].
Clark, DR ;
Flynn, KJ ;
Owens, NJP .
NEW PHYTOLOGIST, 2002, 155 (01) :101-108
[10]  
COLEMAN LW, 1988, PLANT CELL PHYSIOL, V29, P423