Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach

被引:644
作者
Ramakrishnan, Raghunathan [1 ,2 ]
Dral, Pavlo O. [3 ,4 ,5 ]
Rupp, Matthias [1 ,2 ]
von Lilienfeld, O. Anatole [1 ,2 ,6 ]
机构
[1] Univ Basel, Inst Phys Chem, CH-4056 Basel, Switzerland
[2] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat, Dept Chem, CH-4056 Basel, Switzerland
[3] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[4] Univ Erlangen Nurnberg, Comp Chem Ctr, D-91052 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Dept Chem & Pharm, Interdisciplinary Ctr Mol Mat, D-91052 Erlangen, Germany
[6] Argonne Natl Lab, Argonne Leadership Comp Facil, Lemont, IL 60439 USA
基金
瑞士国家科学基金会;
关键词
DESIGN; METHODOLOGY; MOLECULES;
D O I
10.1021/acs.jctc.5b00099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of HartreeFock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.
引用
收藏
页码:2087 / 2096
页数:10
相关论文
共 51 条
[1]  
[Anonymous], MOPAC2012 VERSION 13
[2]   Functional designed to include surface effects in self-consistent density functional theory [J].
Armiento, R ;
Mattsson, AE .
PHYSICAL REVIEW B, 2005, 72 (08)
[3]   Challenges for Density Functional Theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
CHEMICAL REVIEWS, 2012, 112 (01) :289-320
[4]   GAUSSIAN-2 THEORY FOR MOLECULAR-ENERGIES OF 1ST-ROW AND 2ND-ROW COMPOUNDS [J].
CURTISS, LA ;
RAGHAVACHARI, K ;
TRUCKS, GW ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (11) :7221-7230
[5]   Gaussian-4 theory using reduced order perturbation theory [J].
Curtiss, Larry A. ;
Redfern, Paul C. ;
Raghavachari, Krishnan .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (12)
[6]   Gaussian-4 theory [J].
Curtiss, Larry A. ;
Redfern, Paul C. ;
Raghavachari, Krishnan .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (08)
[7]  
Duley W.W., 1984, INTERSTELLAR CHEM
[8]   Combinatorial thinking in chemistry and biology [J].
Ellman, J ;
Stoddard, B ;
Wells, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :2779-2782
[9]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[10]   The inverse hand-structure problem of finding an atomic configuration with given electronic properties [J].
Franceschetti, A ;
Zunger, A .
NATURE, 1999, 402 (6757) :60-63