Exfoliated graphite nanoplatelets-V2O5 nanotube composite electrodes for supercapacitors

被引:106
作者
Bonso, Jeliza S. [1 ,2 ]
Rahy, Abdelaziz [1 ,2 ]
Perera, Sanjaya D. [1 ,2 ]
Nour, Nijem [3 ]
Seitz, Oliver [3 ]
Chabal, Yves J. [3 ]
Balkus, Kenneth J., Jr. [1 ,2 ]
Ferraris, John P. [1 ,2 ]
Yang, Duck J. [1 ,2 ]
机构
[1] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75080 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
关键词
Electrochemical capacitors; Supercapacitors; Exfoliated graphite nanoplatelets; V2O5; nanotubes; OXIDE; PERFORMANCE; ENERGY; INTERCALATION; DEVICES; STORAGE; FILMS;
D O I
10.1016/j.jpowsour.2011.09.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exfoliated graphite nanoplatelet (xGnP) and V2O5 nanotube (VNT) composite electrodes were fabricated and tested as electrodes for supercapacitors. Enhancement of the electrochemical performance of the composite over its component materials was demonstrated using cyclic voltammetry (CV), constant current charge/discharge testing and electrochemical impedance spectroscopy in aqueous and organic electrolytes. The calculated specific capacitance of the composite was 35 F g(-1) in the aqueous electrolyte and 226 F g(-1) in the organic electrolyte at a scan rate of 10 mV s(-1) using a three-electrode system. Asymmetric coin cell devices were fabricated using activated carbon cloth as the positive electrode and xGnP-VNT composite as the negative electrode. The energy and power densities in 1 M LiTFSI were 28 Wh kg(-1) and 303 W kg(-1), respectively, at a discharge current density of 250 mA g(-1). Published by Elsevier B.V.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
[1]   The advanced carbide-derived carbon based supercapacitor [J].
Arulepp, M. ;
Leis, J. ;
Latt, M. ;
Miller, F. ;
Rumma, K. ;
Lust, E. ;
Burke, A. F. .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :1460-1466
[2]   Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions [J].
Avansi, Waldir, Jr. ;
Ribeiro, Caue ;
Leite, Edson R. ;
Mastelaro, Valmor R. .
JOURNAL OF CRYSTAL GROWTH, 2010, 312 (23) :3555-3559
[3]   Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors [J].
Barbieri, O. ;
Hahn, M. ;
Foelske, A. ;
Koetz, R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (11) :A2049-A2054
[4]   Multi layered Nano-Architecture of Variable Sized Graphene Nanosheets for Enhanced Supercapacitor Electrode Performance [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (08) :2293-2300
[5]   An overview of graphene in energy production and storage applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4873-4885
[6]   Activated carbon fibers from electrospinning of polyacrylonitrile/pitch blends [J].
Bui, Nhu-Ngoc ;
Kim, Bo-Hye ;
Yang, Kap Seung ;
Dela Cruz, Marilou E. ;
Ferraris, John P. .
CARBON, 2009, 47 (10) :2538-2539
[7]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[8]   High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Wen, Jing ;
Zhang, Yuewei ;
Shen, Meiqing ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED MATERIALS, 2011, 23 (06) :791-+
[9]   The role and utilization of pseudocapacitance for energy storage by supercapacitors [J].
Conway, BE ;
Birss, V ;
Wojtowicz, J .
JOURNAL OF POWER SOURCES, 1997, 66 (1-2) :1-14
[10]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758