A solution of optimal power flow with multicontingency transient stability constraints

被引:156
作者
Yuan, Y [1 ]
Kubokawa, J
Sasaki, H
机构
[1] Hiroshima Univ, Dept Elect Engn, Hiroshima 7398527, Japan
[2] Hiroshima Inst Technol, Dept Intelligent Machine Engn, Hiroshima 7315193, Japan
关键词
interior point method; nonlinear programming; optimal power flow; power system transient stability;
D O I
10.1109/TPWRS.2003.814856
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a formulation of the multicontingency transient stability constrained optimal power flow (MC-TSCOPF) problem and proposes a method to solve it. In the MC-TSCOPF formulation, this paper introduces a modified formulation for integrating transient stability model into conventional OPF, which reduces the calculation load considerably. In our MC-TSCOPF solution, the primal-dual Newton interior point method (IPM) for nonlinear programming (NLP) is adopted. Computation results on the IEEJ WEST10 model system demonstrate the effectiveness of the presented MC-TSCOPF formulation and the efficiency of the proposed solution approach. Moreover, based on quite convincing simulation results, some phenomena occurred when considering multicontingency are elaborated.
引用
收藏
页码:1094 / 1102
页数:9
相关论文
共 15 条
[1]  
Anderson P. M., 1995, Analysis of faulted power systems
[2]   PRACTICAL METHOD FOR THE DIRECT ANALYSIS OF TRANSIENT STABILITY [J].
ATHAY, T ;
PODMORE, R ;
VIRMANI, S .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1979, 98 (02) :573-584
[3]   Optimal operation solutions of power systems with transient stability constraints [J].
Chen, LN ;
Tada, Y ;
Okamoto, H ;
Tanabe, R ;
Ono, A .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (03) :327-339
[4]   OPTIMAL POWER FLOW SOLUTIONS [J].
DOMMEL, HW ;
TINNEY, WF .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1968, PA87 (10) :1866-+
[5]   FAST TRANSIENT STABILITY SOLUTIONS [J].
DOMMEL, HW ;
SATO, N .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1972, PA91 (04) :1643-&
[6]   On the formulation and theory of the Newton interior-point method for nonlinear programming [J].
ElBakry, AS ;
Tapia, RA ;
Tsuchiya, T ;
Zhang, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) :507-541
[7]   Stability-constrained optimal power flow [J].
Gan, DQ ;
Thomas, RJ ;
Zimmerman, RD .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (02) :535-540
[8]  
*IEEJ TECHN COMM, 1999, 754 IEEJ TECHN COMM
[9]   Challenges to optimal power flow [J].
Momoh, JA ;
Koessler, RJ ;
Bond, MS ;
Stott, B ;
Sun, D ;
Papalexopoulos, A ;
Ristanovic, P .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (01) :444-454
[10]  
PAI MA, 1981, POWER SYSTEM STABILI, P65