Development of efficient xylose fermentation in Saccharomyces cereviside:: Xylose lsomerase as a key component

被引:164
作者
van Maris, Antonius J. A.
Winkler, Aaron A.
Kuyper, Marko
de Laat, Wirn T. A. M.
van Dijken, Johannes P.
Pronk, Jack T.
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Bird Engn BV, NL-3115 HG Schiedam, Netherlands
[3] DSM Anti Infect, NL-2613 AX Delft, Netherlands
[4] Royal Nedalco, NL-4612 PL Bergen Op Zoom, Netherlands
来源
BIOFUELS | 2007年 / 108卷
关键词
D O I
10.1007/10_2007_057
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic engineering of Saccharomyces cerevisiae for ethanol production from D-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment D-xylose, the keto-isomer D-xylulose can be metabolised slowly. Conversion Of D-xylose into D-xylulose is therefore crucial in metabolic engineering of xylose fermentation by S. cerevisiae. Expression of heterologous xylose reductase and xylitol dehydrogenase does enable D-xylose utilisation, but intrinsic redox constraints of this pathway result in undesirable byproduct formation in the absence of oxygen. In contrast, expression of xylose isomerase (XI, EC 5.3.1.5), which directly interconverts D-xylose and D-xylulose, does not have these constraints. However, several problems with the functional expression of various bacterial and Archaeal XI genes have precluded successful use of XI in yeast metabolic engineering. This changed with the discovery of a fungal XI gene in Piromyces sp. E2, expression of which led to high XI activities in S. cerevisiae. When combined with over-expression of the genes of the non-oxidative pentose phosphate pathway of S. cerevisiae, the resulting strain grew anaerobically on D-xylose with a doubling time of ca. 8 h, with the same ethanol yield as on glucose. Additional evolutionary engineering was used to improve the fermentation kinetics of mixed-substrate utilisation, resulting in efficient D-xylose utilisation in synthetic media. Although industrial pilot experiments have already demonstrated high ethanol yields from the D-xylose present in plant biomass hydrolysates, strain robustness, especially with respect to tolerance to inhibitors present in hydrolysates, can still be further improved.
引用
收藏
页码:179 / 204
页数:26
相关论文
共 72 条
[1]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[2]   ANAEROBIC NUTRITION OF SACCHAROMYCES CEREVISIAE .2. UNSATURATED FATTY ACID REQUIREMENT FOR GROWTH IN A DEFINED MEDIUM [J].
ANDREASEN, AA ;
STIER, TJB .
JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1954, 43 (03) :271-281
[3]   ANAEROBIC NUTRITION OF SACCHAROMYCES CEREVISIAE .1. ERGOSTEROL REQUIREMENT FOR GROWTH IN A DEFINED MEDIUM [J].
ANDREASEN, AA ;
STIER, TJB .
JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1953, 41 (01) :23-36
[4]   Mechanism of Action of D-Xylose Isomerase [J].
Asboth, B. ;
Naray-Szabo, G. .
CURRENT PROTEIN & PEPTIDE SCIENCE, 2000, 1 (03) :237-254
[5]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[6]  
Barnett J.A., 1990, YEASTS CHARACTERISTI, DOI DOI 10.1046/J.1525-1470.2001.1862020A.X
[7]   DIRECT EVIDENCE FOR A XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE [J].
BATT, CA ;
CARVALLO, S ;
EASSON, DD ;
AKEDO, M ;
SINSKEY, AJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (04) :549-553
[8]   A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol [J].
Becker, J ;
Boles, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (07) :4144-4150
[9]   GenBank [J].
Benson, Dennis A. ;
Karsch-Mizrachi, Ilene ;
Lipman, David J. ;
Ostell, James ;
Wheeler, David L. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D16-D20
[10]   Molecular and industrial aspects of glucose isomerase [J].
Bhosale, SH ;
Rao, MB ;
Deshpande, VV .
MICROBIOLOGICAL REVIEWS, 1996, 60 (02) :280-+