Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle -: A key event in muscle fibrogenesis

被引:369
作者
Li, Y
Foster, W
Deasy, BM
Chan, YS
Prisk, V
Tang, Y
Cummins, J
Huard, J
机构
[1] Univ Pittsburgh, Dept Mol Genet & Biochem, Pittsburgh, PA USA
[2] Univ Pittsburgh, Dept Orthopaed Surg, Pittsburgh, PA USA
[3] Childrens Hosp Pittsburgh, Growth & Dev Lab, Pittsburgh, PA 15213 USA
关键词
D O I
10.1016/S0002-9440(10)63188-4
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Transforming growth factor-beta1 (TGF-beta1) is thought to play a crucial role in fibrotic diseases. This study demonstrates for the first time that TGF-beta1 stimulation can induce myoblasts (C2C12 cells) to express TGF-beta1 in an autocrine manner, down-regulate the expression of myogenic proteins, and initiate the production of fibrosis-related proteins in vitro. Direct injection of human recombinant TGF-beta1 into skeletal muscle in vivo stimulated myogenic cells, including myofibers, to express TGF-beta1 and induced scar tissue formation within the injected area. We also observed the local expression of this growth factor by myogenic cells, including regenerating myofibers, in injured skeletal muscle. Finally, we demonstrated that TGF-beta1 gene-transfected myoblasts (CT cells) can differentiate into myofibroblastic cells after intramuscular transplantation, but that decorin, an anti-fibrosis agent, prevents this differentiation process by blocking TGF-beta1. In summary, these findings indicate that TGF-beta1 is a major stimulator that plays a significant role in both the initiation of fibrotic cascades in skeletal muscle and the induction of myogenic cells to differentiate into myofibroblastic cells in injured muscle.
引用
收藏
页码:1007 / 1019
页数:13
相关论文
共 53 条
[1]   Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites [J].
Abe, R ;
Donnelly, SC ;
Peng, T ;
Bucala, R ;
Metz, CN .
JOURNAL OF IMMUNOLOGY, 2001, 166 (12) :7556-7562
[2]   PLATELET-DERIVED GROWTH-FACTOR IN IDIOPATHIC PULMONARY FIBROSIS [J].
ANTONIADES, HN ;
BRAVO, MA ;
AVILA, RE ;
GALANOPOULOS, T ;
NEVILLEGOLDEN, J ;
MAXWELL, M ;
SELMAN, M .
JOURNAL OF CLINICAL INVESTIGATION, 1990, 86 (04) :1055-1064
[3]   EXPRESSION OF TRANSFORMING GROWTH-FACTOR-BETA-1 IN DYSTROPHIC PATIENT MUSCLES CORRELATES WITH FIBROSIS - PATHOGENETIC ROLE OF A FIBROGENIC CYTOKINE [J].
BERNASCONI, P ;
TORCHIANA, E ;
CONFALONIERI, P ;
BRUGNONI, R ;
BARRESI, R ;
MORA, M ;
CORNELIO, F ;
MORANDI, L ;
MANTEGAZZA, R .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (02) :1137-1144
[4]  
Bischoff R, 1994, MYOLOGY, V1, P97
[5]   Functional improvement of dystrophic muscle by myostatin blockade [J].
Bogdanovich, S ;
Krag, TOB ;
Barton, ER ;
Morris, LD ;
Whittemore, LA ;
Ahima, RS ;
Khurana, TS .
NATURE, 2002, 420 (6914) :418-421
[6]  
BORDER WA, 1994, NEW ENGL J MED, V331, P1286
[7]   TGF-β and fibrosis [J].
Branton, MH ;
Kopp, JB .
MICROBES AND INFECTION, 1999, 1 (15) :1349-1365
[8]   TRANSFORMING GROWTH-FACTOR-BETA REPRESSES THE ACTIONS OF MYOGENIN THROUGH A MECHANISM INDEPENDENT OF DNA-BINDING [J].
BRENNAN, TJ ;
EDMONDSON, DG ;
LI, L ;
OLSON, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3822-3826
[9]   Amphibian limb regeneration: Rebuilding a complex structure [J].
Brockes, JP .
SCIENCE, 1997, 276 (5309) :81-87
[10]   CIRCULATING FIBROCYTES DEFINE A NEW LEUKOCYTE SUBPOPULATION THAT MEDIATES TISSUE-REPAIR [J].
BUCALA, R ;
SPIEGEL, LA ;
CHESNEY, J ;
HOGAN, M ;
CERAMI, A .
MOLECULAR MEDICINE, 1994, 1 (01) :71-81