All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries

被引:494
作者
Mitchell, Robert R. [1 ]
Gallant, Betar M. [2 ]
Thompson, Carl V. [1 ]
Shao-Horn, Yang [2 ]
机构
[1] MIT, Mat Micro & Nano Syst Grp, Cambridge, MA 02139 USA
[2] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LITHIUM BATTERIES; AIR BATTERIES; CAPACITY; CATHODE; DISCHARGE; CATALYST; LIFEPO4;
D O I
10.1039/c1ee01496j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hollow carbon fibers with diameters on the order of 30 nm were grown on a ceramic porous substrate, which was used as the oxygen electrode in lithium-oxygen (Li-O-2) batteries. These all-carbon-fiber (binder-free) electrodes were found to yield high gravimetric energies (up to 2500 W h kg(discharged)(-1)) in Li-O-2 cells, translating to an energy enhancement similar to 4 times greater than the state-of-the-art lithium intercalation compounds such as LiCoO2 (similar to 600 W h kg(electrode)(-1)). The high gravimetric energy achieved in this study can be attributed to low carbon packing in the grown carbon-fiber electrodes and highly efficient utilization of the available carbon mass and void volume for Li2O2 formation. The nanofiber structure allowed for the clear visualization of Li2O2 formation and morphological evolution during discharge and its disappearance upon charge, where Li2O2 particles grown on the sidewalls of the aligned carbon fibers were found to be toroids, having particle sizes increasing (up to similar to 1 mu m) with increasing depth-of-discharge. The visualization of Li2O2 morphologies upon discharge and disappearance upon charge represents a critical step toward understanding key processes that limit the rate capability and low round-trip efficiencies of Li-O-2 batteries, which are not currently understood within the field.
引用
收藏
页码:2952 / 2958
页数:7
相关论文
共 36 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   High-Capacity Lithium-Air Cathodes [J].
Beattie, S. D. ;
Manolescu, D. M. ;
Blair, S. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :A44-A47
[3]  
Chase M.W., 1998, J. of Physical and Chemical Reference Data, DOI 10.18434/T42S31
[4]   From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries [J].
Chen, Haiyan ;
Armand, Michel ;
Demailly, Gilles ;
Dolhem, Franck ;
Poizot, Philippe ;
Tarascon, Jean-Marie .
CHEMSUSCHEM, 2008, 1 (04) :348-355
[5]   Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1370-1374
[6]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[7]   An O2 cathode for rechargeable lithium batteries:: The effect of a catalyst [J].
Debart, Aurelie ;
Bao, Jianli ;
Armstrong, Graham ;
Bruce, Peter G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1177-1182
[8]   DIE KRISTALLSTRUKTUREN DER ALKALIPEROXYDE [J].
FOPPL, H .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1957, 291 (1-4) :12-50
[9]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[10]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172