Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode

被引:76
作者
Camacho-Forero, Luis E. [1 ]
Balbuena, Perla B. [1 ,2 ,3 ]
机构
[1] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
关键词
GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; SURFACE-CHEMISTRY; ION BATTERIES; MECHANISMS; LI; STABILITY; BIS(FLUOROSULFONYL)IMIDE; REDUCTION; SOLVENTS;
D O I
10.1039/c7cp06485c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium metal anode is one of the key components of the lithium-sulfur (Li-S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid-electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements in performance of the Li-S technology. In this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl) imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least similar to 0.9 vertical bar e vertical bar per molecule for a DME to decompose into CH3O- and C2H42- via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. In most cases, these reactions were shown to have low to moderate activation barriers.
引用
收藏
页码:30861 / 30873
页数:13
相关论文
共 57 条
  • [1] Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery
    Adams, Brian D.
    Black, Robert
    Williams, Zack
    Fernandes, Russel
    Cuisinier, Marine
    Berg, Erik Jaemstorp
    Novak, Petr
    Murphy, Graham K.
    Nazar, Linda F.
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (01)
  • [2] An Advanced Lithium-Ion Sulfur Battery for High Energy Storage
    Agostini, Marco
    Scrosati, Bruno
    Hassoun, Jusef
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (16)
  • [3] [Anonymous], 2015, NIOVIA MAT STUD 2016
  • [4] Capacity fade mechanisms and side reactions in lithium-ion batteries
    Arora, P
    White, RE
    Doyle, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) : 3647 - 3667
  • [5] Interactions of Dimethoxy Ethane with Li2O2 Clusters and Likely Decomposition Mechanisms for Li-O2 Batteries
    Assary, Rajeev S.
    Lau, Kah Chun
    Amine, Khalil
    Sun, Yang-Kook
    Curtiss, Larry A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (16) : 8041 - 8049
  • [6] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [7] A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    Aurbach, D
    Zinigrad, E
    Cohen, Y
    Teller, H
    [J]. SOLID STATE IONICS, 2002, 148 (3-4) : 405 - 416
  • [8] THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS
    AURBACH, D
    EINELY, Y
    ZABAN, A
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) : L1 - L3
  • [9] Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.128, 10.1038/nenergy.2016.128]
  • [10] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652