Optimization, relaxation and Young measures

被引:36
作者
Pedregal, P [1 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
关键词
integral functionals; oscillatory behavior; generalized optimization problems; local and nonlocal admissibility constraints;
D O I
10.1090/S0273-0979-99-00774-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review the use of Young measures in analyzing relaxed and generalized formulations for typical problems of optimization including variational principles, optimal control problems, models in materials science, optimal design problems and nonlocal optimization problems.
引用
收藏
页码:27 / 58
页数:32
相关论文
共 72 条
[61]  
ROGERS RC, 1992, J INTEGRAL EQU APPL, V3, P85
[62]  
Roubiek T., 1997, Relaxation in optimization theory and variational calculus
[63]   RANK-ONE CONVEXITY DOES NOT IMPLY QUASICONVEXITY [J].
SVERAK, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :185-189
[64]   NEW EXAMPLES OF QUASI-CONVEX FUNCTIONS [J].
SVERAK, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (04) :293-300
[65]   H-MEASURES, A NEW APPROACH FOR STUDYING HOMOGENIZATION, OSCILLATIONS AND CONCENTRATION EFFECTS IN PARTIAL-DIFFERENTIAL EQUATIONS [J].
TARTAR, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :193-230
[66]  
TARTAR L, 1992, DEV PARTIAL DIFFEREN
[67]  
Tartar L., 1979, Res. Notes in Math., V39, P136
[68]  
TARTAR L, 1985, RES NOTES MATH, V125, P168
[69]  
VALADIER M, 1990, LECT NOTES MATH, V1446, P152
[70]  
Warga J., 1972, OPTIMAL CONTROL DIFF, DOI 10.1016/c2013-0-11669-8