Probabilistic solar power forecasting in smart grids using distributed information

被引:106
作者
Bessa, R. J. [1 ]
Trindade, A. [1 ,2 ]
Silva, Catia S. P. [3 ]
Miranda, V. [1 ,2 ]
机构
[1] INESC, TEC, Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, Fac Engn, FEUP, P-4100 Oporto, Portugal
[3] Univ Florida, Computat NeuroEngn Lab, Gainesville, FL USA
关键词
Solar power; Forecasting; Smart grid; Distributed sensors; Probabilistic; Gradient boosting; POINT ESTIMATE METHOD; DISTRIBUTION-SYSTEM; WIND; GENERATION;
D O I
10.1016/j.ijepes.2015.02.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The deployment of Smart Grid technologies opens new opportunities to develop new forecasting and optimization techniques. The growth of solar power penetration in distribution grids imposes the use of solar power forecasts as inputs in advanced grid management functions. This paper proposes a new forecasting algorithm for 6 h ahead based on the vector autoregression framework, which combines distributed time series information collected by the Smart Grid infrastructure. Probabilistic forecasts are generated for the residential solar photovoltaic (PV) and secondary substation levels. The test case consists of 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Evora, Portugal. The benchmark model is the well-known autoregressive forecasting method (univariate approach). The average improvement in terms of root mean square error (point forecast evaluation) and continuous ranking probability score (probabilistic forecast evaluation) for the first 3 lead-times was between 8% and 12%, and between 1.4% and 5.9%, respectively. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 35 条
[1]   Short-term power forecasting system for photovoltaic plants [J].
Alfredo Fernandez-Jimenez, L. ;
Munoz-Jimenez, Andres ;
Falces, Alberto ;
Mendoza-Villena, Montserrat ;
Garcia-Garrido, Eduardo ;
Lara-Santillan, Pedro M. ;
Zorzano-Alba, Enrique ;
Zorzano-Santamaria, Pedro J. .
RENEWABLE ENERGY, 2012, 44 :311-317
[2]   Quantile Forecasting of Wind Power Using Variability Indices [J].
Anastasiades, Georgios ;
McSharry, Patrick .
ENERGIES, 2013, 6 (02) :662-695
[3]  
[Anonymous], 2009, ANLDIS101
[4]  
[Anonymous], 2003, ECONOMETRIC THEORY M
[5]  
[Anonymous], 2011, P NEXT GEN DAT MIN S
[6]  
BACHER P, 2008, THESIS TU DENMARK
[7]   Online short-term solar power forecasting [J].
Bacher, Peder ;
Madsen, Henrik ;
Nielsen, Henrik Aalborg .
SOLAR ENERGY, 2009, 83 (10) :1772-1783
[8]   Re-considering the economics of photovoltaic power [J].
Bazilian, Morgan ;
Onyeji, Ijeoma ;
Liebreich, Michael ;
MacGill, Ian ;
Chase, Jennifer ;
Shah, Jigar ;
Gielen, Dolf ;
Arent, Doug ;
Landfear, Doug ;
Shi Zhengrong .
RENEWABLE ENERGY, 2013, 53 :329-338
[9]   Spatial-Temporal Solar Power Forecasting for Smart Grids [J].
Bessa, Ricardo J. ;
Trindade, Artur ;
Miranda, Vladimiro .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2015, 11 (01) :232-241
[10]  
Bessa RJ, 2014, P PSCC 2014 18 POW S