Galilean-invariant lattice-Boltzmann models with H theorem -: art. no. 025103

被引:72
作者
Boghosian, BM
Love, PJ
Coveney, PV
Karlin, IV
Succi, S
Yepez, J
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] UCL, Dept Chem, Ctr Computat Sci, London WC1H 0AJ, England
[3] ETH, ETH Zentrum, Inst Polymers, Dept Mat, CH-8092 Zurich, Switzerland
[4] Ist Applicaz Calcolo, I-00161 Rome, Italy
[5] USAF, Res Lab, Hanscom AFB, MA 01731 USA
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 02期
关键词
D O I
10.1103/PhysRevE.68.025103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The required H function has the form of the Burg entropy for D=2, and of a Tsallis entropy with q=1-(2/D) for D>2, where D is the number of spatial dimensions. We use this observation to construct a fully explicit, unconditionally stable, Galilean-invariant, lattice-Boltzmann model for the incompressible Navier-Stokes equations, for which attainable Reynolds number is limited only by grid resolution.
引用
收藏
页数:4
相关论文
共 13 条
[1]  
[Anonymous], UNPUB
[2]  
Ansumali S, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056312
[3]   Stabilization of the lattice Boltzmann method by the H theorem:: A numerical test [J].
Ansumali, S ;
Karlin, IV .
PHYSICAL REVIEW E, 2000, 62 (06) :7999-8003
[4]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[5]   Entropic lattice Boltzmann methods [J].
Boghosian, BM ;
Yepez, J ;
Coveney, PV ;
Wager, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2007) :717-766
[6]   Family of additive entropy functions out of thermodynamic limit [J].
Gorban, AN ;
Karlin, IV .
PHYSICAL REVIEW E, 2003, 67 (01) :7
[7]   Perfect entropy functions of the Lattice Boltzmann method [J].
Karlin, IV ;
Ferrante, A ;
Öttinger, HC .
EUROPHYSICS LETTERS, 1999, 47 (02) :182-188
[8]   Maximum entropy principle for lattice kinetic equations [J].
Karlin, IV ;
Gorban, AN ;
Succi, S ;
Boffi, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :6-9
[9]   Detailed balance and H-theorems for dissipative particle dynamics [J].
Marsh, CA ;
Coveney, PV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (31) :6561-6568
[10]   LATTICE BGK MODELS FOR NAVIER-STOKES EQUATION [J].
QIAN, YH ;
DHUMIERES, D ;
LALLEMAND, P .
EUROPHYSICS LETTERS, 1992, 17 (6BIS) :479-484