Galilean-invariant lattice-Boltzmann models with H theorem -: art. no. 025103

被引:72
作者
Boghosian, BM
Love, PJ
Coveney, PV
Karlin, IV
Succi, S
Yepez, J
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] UCL, Dept Chem, Ctr Computat Sci, London WC1H 0AJ, England
[3] ETH, ETH Zentrum, Inst Polymers, Dept Mat, CH-8092 Zurich, Switzerland
[4] Ist Applicaz Calcolo, I-00161 Rome, Italy
[5] USAF, Res Lab, Hanscom AFB, MA 01731 USA
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 02期
关键词
D O I
10.1103/PhysRevE.68.025103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The required H function has the form of the Burg entropy for D=2, and of a Tsallis entropy with q=1-(2/D) for D>2, where D is the number of spatial dimensions. We use this observation to construct a fully explicit, unconditionally stable, Galilean-invariant, lattice-Boltzmann model for the incompressible Navier-Stokes equations, for which attainable Reynolds number is limited only by grid resolution.
引用
收藏
页数:4
相关论文
共 13 条
[11]   Colloquium:: Role of the H theorem in lattice Boltzmann hydrodynamic simulations [J].
Succi, S ;
Karlin, IV ;
Chen, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (04) :1203-1220
[12]  
Succi S., 2001, The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond
[13]  
Tsallis C., 2001, NONEXTENSIVE STAT ME