Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations

被引:109
作者
Williams, RS
Chasman, DI
Hau, DD
Hui, B
Lau, AY
Glover, JNM
机构
[1] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada
[2] Brigham & Womens Hosp, Div Prevent Med, Boston, MA 02215 USA
[3] Variagen Nuvelo Inc, Cambridge, MA 02139 USA
关键词
D O I
10.1074/jbc.M310182200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most cancer-associated BRCA1 mutations identified to date result in the premature translational termination of the protein, highlighting a crucial role for the C-terminal, BRCT repeat region in mediating BRCA1 tumor suppressor function. However, the molecular and genetic effects of missense mutations that map to the BRCT region remain largely unknown. Using a protease-based assay, we directly assessed the sensitivity of the folding of the BRCT domain to an extensive set of truncation and single amino acid substitutions derived from breast cancer screening programs. The protein can tolerate truncations of up to 8 amino acids, but further deletion results in drastic BRCT folding defects. This molecular phenotype can be correlated with an increased susceptibility to disease. A cross-validated computational assessment of the BRCT mutation data base suggests that as much as half of all BRCT missense mutations contribute to BRCA1 loss of function and disease through protein-destabilizing effects. The coupled use of proteolytic methods and computational predictive methods to detect mutant BRCA1 conformations at the protein level will augment the efficacy of current BRCA1 screening protocols, especially in the absence of clinical data that can be used to discriminate deleterious BRCT missense mutations from benign polymorphisms.
引用
收藏
页码:53007 / 53016
页数:10
相关论文
共 58 条
[1]   BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase a [J].
Anderson, SE ;
Schlegel, BP ;
Nakajima, T ;
Wolpin, ES ;
Parvin, JD .
NATURE GENETICS, 1998, 19 (03) :254-256
[2]   A superfamily of conserved domains in DNA damage responsive cell cycle checkpoint proteins [J].
Bork, P ;
Hofmann, K ;
Bucher, P ;
Neuwald, AF ;
Altschul, SF ;
Koonin, EV .
FASEB JOURNAL, 1997, 11 (01) :68-76
[3]   Rescuing the function of mutant p53 [J].
Bullock, AN ;
Fersht, A .
NATURE REVIEWS CANCER, 2001, 1 (01) :68-76
[4]   From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair [J].
Callebaut, I ;
Mornon, JP .
FEBS LETTERS, 1997, 400 (01) :25-30
[5]   BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function [J].
Cantor, SB ;
Bell, DW ;
Ganesan, S ;
Kass, EM ;
Drapkin, R ;
Grossman, S ;
Wahrer, DCR ;
Sgroi, DC ;
Lane, WS ;
Haber, DA ;
Livingston, DM .
CELL, 2001, 105 (01) :149-160
[6]   Mutations in the BRCT domain confer temperature sensitivity to BRCA1 in transcription activation [J].
Carvalho, MA ;
Billack, B ;
Chan, E ;
Worley, T ;
Cayanan, C ;
Monteiro, ANA .
CANCER BIOLOGY & THERAPY, 2002, 1 (05) :502-508
[7]   Transcriptional activation by BRCA1 [J].
Chapman, MS ;
Verma, IM .
NATURE, 1996, 382 (6593) :678-679
[8]   Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation [J].
Chasman, D ;
Adams, RM .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :683-706
[9]   Cloning, genetic mapping and expression studies of the rat Brca1 gene [J].
Chen, KS ;
Shepel, LA ;
Haag, JD ;
Heil, GM ;
Gould, MN .
CARCINOGENESIS, 1996, 17 (08) :1561-1566
[10]   Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene [J].
Couch, FJ ;
Weber, BL ;
Borresen, AL ;
Brody, L ;
Casey, G ;
Devilee, P ;
Fitzgerald, M ;
Friend, S ;
Gayther, S ;
Goldgar, D ;
Murphy, P ;
Szabo, C ;
Weber, B ;
Wiseman, R ;
Anderson, T ;
Durocher, F ;
Ganguly, A ;
King, MC ;
Lenoir, G ;
Narod, S ;
Olopade, O ;
Plummer, S ;
Ponder, B ;
Serova, O ;
Simard, J ;
Stratton, M ;
Warren, B .
HUMAN MUTATION, 1996, 8 (01) :8-18