Feedback control of a thermal fluid using state estimation

被引:26
作者
Burns, JA [1 ]
King, BB
Rubio, D
机构
[1] Virginia Polytech Inst & State Univ, Ctr Optimal Design & Control, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
fluid flow control; state estimation; finite element approximation;
D O I
10.1080/10618569808940867
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we consider the problem of designing a feedback controller for a thermal fluid. Any practical feedback controller for a fluid flow system must incorporate some type of state estimator, Moreover, regardless of the approach, one must introduce approximations at some point in the analysis. The method presented here uses distributed parameter control theory to guide the design and approximation of practical state estimators. We use finite element techniques to approximate optimal infinite dimensional controllers based on linear quadratic Gaussian (LQG) and MinMax theory for the Boussinesq equations. These designs are then compared to full state feedback, We present several numerical experiments and we describe how these techniques can also be applied to sensor placement problems.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 21 条
[11]  
Lions LJ, 1972, NONHOMOGENEOUS BOUND, V1
[12]  
Marrekchi H., 1993, THESIS VIRGINIA POLY
[13]  
Marsden JE, 1984, MATH FDN ELASTICITY
[14]   MIN-MAX GAME-THEORY AND ALGEBRAIC RICCATI-EQUATIONS FOR BOUNDARY CONTROL-PROBLEMS WITH CONTINUOUS INPUT-SOLUTION MAP .2. THE GENERAL-CASE [J].
MCMILLAN, C ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 29 (01) :1-65
[15]  
MCMILLIAN C, 1993, MIN MAX GAME THEOR 1, P377
[16]   A GAME THEORETIC CONTROLLER AND ITS RELATIONSHIP TO H-INFINITY AND LINEAR-EXPONENTIAL-GAUSSIAN SYNTHESIS [J].
RHEE, I ;
SPEYER, JL .
PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, :909-915
[17]  
RUBIO D, IN PRESS J MATH SYST
[18]  
RUBIO D, 1997, THESIS VIRGINIA POLY
[19]   CONTROLLING A CHAOTIC SYSTEM [J].
SINGER, J ;
WANG, YZ ;
BAU, HH .
PHYSICAL REVIEW LETTERS, 1991, 66 (09) :1123-1125
[20]  
VANKEULEN B, 1993, THESIS U GRONINGEN N