Numerical study of the iterative solution of the one-electron Dirac equation based on 'direct perturbation theory'

被引:17
作者
Franke, R
机构
[1] Lehrstuhl für Theor. Chemie, Ruhr-Universität Bochum
关键词
D O I
10.1016/S0009-2614(96)01361-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The one-electron Dirac equation is solved in an iterative manner starting with the solution of the Schrodinger equation. The method is applied in a basis of atom-centred Gaussian-type functions to the ground state of selected hydrogen-like ions up to Eka Pt109+ and the heavy quasi-molecules Th-2(179+), NiPb(109+)and Th-3(269+) (in D-infinity h and D-3h symmetry). An overall 8-figure accuracy in the absolute relativistic energies is achieved. The iterative procedure converges better than linearly for light systems and linearly for systems containing nuclear charges greater than Z approximate to 40.
引用
收藏
页码:495 / 501
页数:7
相关论文
共 37 条
[11]  
HELGAKER TU, 1986, UNPUB HERMIT PROGRAM
[12]   CORRELATION AND RELATIVISTIC EFFECTS FOR MANY-ELECTRON SYSTEMS [J].
JANKOWSKI, K ;
RUTKOWSKI, A .
PHYSICA SCRIPTA, 1987, 36 (03) :464-467
[13]   PERTURBATION-THEORY OF RELATIVISTIC CORRECTIONS .1. THE NON-RELATIVISTIC LIMIT OF THE DIRAC-EQUATION AND A DIRECT PERTURBATION EXPANSION [J].
KUTZELNIGG, W .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1989, 11 (01) :15-28
[14]   Stationary direct perturbation theory of relativistic corrections [J].
Kutzelnigg, W .
PHYSICAL REVIEW A, 1996, 54 (02) :1183-1198
[15]   PERTURBATION-THEORY OF RELATIVISTIC CORRECTIONS .2. ANALYSIS AND CLASSIFICATION OF KNOWN AND OTHER POSSIBLE METHODS [J].
KUTZELNIGG, W .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1990, 15 (01) :27-50
[16]   RELATIVISTIC HARTREE-FOCK BY MEANS OF STATIONARY DIRECT PERTURBATION-THEORY .1. GENERAL-THEORY [J].
KUTZELNIGG, W ;
OTTSCHOFSKI, E ;
FRANKE, R .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (04) :1740-1751
[17]  
KUTZELNIGG W, 1994, NEW CHALLENGES COMPU, P112
[18]   MINIMAX VARIATIONAL SOLUTION OF THE DIRAC-EQUATION IN MOLECULAR GEOMETRIES [J].
LAJOHN, L ;
TALMAN, JD .
CHEMICAL PHYSICS LETTERS, 1992, 189 (4-5) :383-389
[19]  
Madsen M. M., 1971, ATOM DATA, V2, P171, DOI DOI 10.1016/S0092-640X(70)80008-0
[20]   VARIATIONAL SOLUTION OF THE DIRAC-EQUATION WITHIN A MULTICENTER BASIS SET OF GAUSSIAN FUNCTIONS [J].
MARK, F ;
LISCHKA, H ;
ROSICKY, F .
CHEMICAL PHYSICS LETTERS, 1980, 71 (03) :507-512