Carbon nanotube formation and growth via particle-particle interaction

被引:35
作者
Height, MJ
Howard, JB
Tester, JW
Sande, JBV
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1021/jp046021n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotubes are observed to form under a wide range of temperatures, pressures, reactive agents, and catalyst metals. In this paper we attempt to rationalize this body of observations reported in the literature in terms of fundamental processes driving nanotube formation. Many of the observed effects can be attributed to the interaction of three key processes: surface catalysis and deposition of carbon, diffusive transport of carbon, and precipitation effects. A new nanotube formation mechanism is proposed that describes the nanotube structures observed experimentally in a premixed flame and can account for certain shortcomings of the prevailing mechanism that has been repeatedly applied to explain nanotube formation in nonflame environments. The interacting particle model (IPM) attributes the initiation of nanotube growth to the physical interaction between catalyst particles. Coalescence of two (or more) catalyst particles leads to partial blocking of the particle surface, causing a disparity in carbon deposition over the particle surface. The resulting concentration gradient generates a net diffusive flux toward the interparticle contact point. Dimers that separate in this condition can support continuous nanotube growth between the particles. The model can also be extended to multiple particles to account for more complex morphologies. The IPM is consistent with many of the structures observed in the flame-produced material. The validity of the model is evaluated through analysis of diffusion dynamics and a force analysis of particle binding and separation. The IPM is also discussed in relation to identifying the requirements and best conditions to support nanotube growth in the premixed flame. The formation of nanotubes between particles as described by the IPM indicates that a single mechanism cannot completely describe nanotube synthesis; more likely, multiple pathways exist with varying rates that depend on specific process conditions.
引用
收藏
页码:12337 / 12346
页数:10
相关论文
共 83 条
[1]   A REVISED EXPRESSION FOR THE DIFFUSIVITY OF CARBON IN BINARY FE-C AUSTENITE [J].
AGREN, J .
SCRIPTA METALLURGICA, 1986, 20 (11) :1507-1510
[2]   Growth mechanisms and diameter evolution of single wall carbon nanotubes [J].
Alvarez, L ;
Guillard, T ;
Sauvajol, JL ;
Flamant, G ;
Laplaze, D .
CHEMICAL PHYSICS LETTERS, 2001, 342 (1-2) :7-14
[3]   A FORMATION MECHANISM FOR CATALYTICALLY GROWN HELIX-SHAPED GRAPHITE NANOTUBES [J].
AMELINCKX, S ;
ZHANG, XB ;
BERNAERTS, D ;
ZHANG, XF ;
IVANOV, V ;
NAGY, JB .
SCIENCE, 1994, 265 (5172) :635-639
[4]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[5]   Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon [J].
Avdeeva, LB ;
Reshetenko, TV ;
Ismagilov, ZR ;
Likholobov, VA .
APPLIED CATALYSIS A-GENERAL, 2002, 228 (1-2) :53-63
[6]   Carbon nanotube electronics [J].
Avouris, P .
CHEMICAL PHYSICS, 2002, 281 (2-3) :429-445
[7]   THE FORMATION OF FILAMENTOUS CARBON FROM DECOMPOSITION OF ACETYLENE OVER VANADIUM AND MOLYBDENUM [J].
BAKER, RTK ;
CHLUDZINSKI, JJ ;
DUDASH, NS ;
SIMOENS, AJ .
CARBON, 1983, 21 (05) :463-468
[8]  
BAKER RTK, 1982, COKE FORMATION METAL, P1
[9]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[10]   Carbon and metals: a path to single-wall carbon nanotubes [J].
Bethune, DS .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :90-96