On the magneto-elastic properties of elastomer-ferromagnet composites

被引:150
作者
Borcea, L
Bruno, O
机构
[1] Rice Univ, Houston, TX 77005 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
inclusions; elastic; inhomogeneous material; energy methods; magneto-rheological;
D O I
10.1016/S0022-5096(01)00108-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the macroscopic magneto-mechanical behavior of composite materials consisting of a random, statistically homogeneous distribution of ferromagnetic, rigid inclusions embedded firmly in a non-magnetic elastic matrix. Specifically, for given applied elastic and magnetic fields, we calculate the overall deformation and stress-strain relation for such a composite, correct to second order in the particle volume fraction. Our solution accounts for the fully coupled magneto-elastic interactions; the distribution of magnetization in the composite is calculated from the basic minimum energy principle of magneto-elasticity. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2877 / 2919
页数:43
相关论文
共 32 条
[21]  
LITTLE RW, 1973, ELASTICITY, P13
[22]  
Miyamoto H., 1958, B JSME, V1, P103
[23]  
MORRISH AH, 1965, PHYSICAL PRINCIPLES
[24]  
NAGHDI PM, 1961, J MATH MECH, V10, P233
[25]   THE RESPONSE OF AN ELASTOMER FILLED WITH SOFT FERRITE TO MECHANICAL AND MAGNETIC INFLUENCES [J].
RIGBI, Z ;
JILKEN, L .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1983, 37 (03) :267-276
[26]  
Sinay Ya. G., 1977, INTRO ERGODIC THEORY
[27]  
Sokolnikoff I.S., 1946, Mathematical Theory of Elasticity LK
[28]  
STERNBERG E, 1952, J APPL MECH-T ASME, V19, P19
[29]  
TARTAR L, 1977, COURS BECCO
[30]   ASYMMETRIC PROBLEM OF ELASTICITY THEORY FOR AN INFINITE ELASTIC SOLID CONTAINING SOME SPHERICAL CAVITIES - (1ST REPORT AN INFINITE SOLID CONTAINING 2 SPHERICAL CAVITIES) [J].
TSUCHIDA, E ;
NAKAHARA, I ;
KODAMA, M .
BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1976, 19 (135) :993-1000