Numerical analysis of a relaxed variational model of hysteresis in two-phase solids

被引:16
作者
Carstensen, C
Plechác, P
机构
[1] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2001年 / 35卷 / 05期
关键词
variational problems; phase transitions; elasticity; hysteresis; a priori error estimates; a posteriori error estimates; adaptive algorithms; non-convex minimization; microstructure;
D O I
10.1051/m2an:2001139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization. The proposed scheme enables numerical simulations which show that the model allows for hysteresis.
引用
收藏
页码:865 / 878
页数:14
相关论文
共 24 条
[1]   PROPOSED EXPERIMENTAL TESTS OF A THEORY OF FINE MICROSTRUCTURE AND THE 2-WELL PROBLEM [J].
BALL, JM ;
JAMES, RD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1650) :389-450
[2]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[3]   Local regularity of solutions of variational problems for the equilibrium configuration of an incompressible, multiphase elastic body [J].
Bildhauer, M ;
Fuchs, M ;
Seregin, G .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (01) :53-81
[4]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[5]   Fully reliable localized error control in the FEM [J].
Carstensen, C ;
Funken, SA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04) :1465-1484
[6]   Numerical analysis of compatible phase transitions in elastic solids [J].
Carstensen, C ;
Plechác, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :2061-2081
[7]   Numerical solution of the scalar double-well problem allowing microstructure [J].
Carstensen, C ;
Plechac, P .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :997-1026
[8]  
CARSTENSEN C, UNPUB LOCAL STRESS R
[9]  
Carstensen C., 2000, East-West J. Numer. Math, V8, P153
[10]  
CIARLET PG, 1978, FINITE ELEMENT METHD