Molecular Imaging-Based Dose Painting: A Novel Paradigm for Radiation Therapy Prescription

被引:232
作者
Bentzen, Soren M. [1 ,2 ,3 ,4 ,5 ]
Gregoire, Vincent [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Wisconsin, Dept Human Oncol, Madison, WI 53792 USA
[2] Univ Wisconsin, Dept Med Phys, Madison, WI 53792 USA
[3] Univ Wisconsin, Dept Biostat, Madison, WI 53792 USA
[4] Univ Wisconsin, Dept Med Informat, Madison, WI 53792 USA
[5] Catholic Univ Louvain, St Luc Univ Hosp, Ctr Mol Imaging & Expt Radiotherapy, Dept Radiat Oncol, B-1200 Brussels, Belgium
关键词
POSITRON-EMISSION-TOMOGRAPHY; CELL LUNG-CANCER; TUMOR-CONTROL PROBABILITY; GROWTH-FACTOR RECEPTOR; INTENSITY-MODULATED RADIOTHERAPY; NECK-CANCER; ACCELERATED RADIOTHERAPY; PROSTATE-CANCER; HETEROGENEOUS TUMORS; TARGET VOLUME;
D O I
10.1016/j.semradonc.2010.10.001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Dose painting is the prescription of a nonuniform radiation dose distribution to the target volume based on functional or molecular images shown to indicate the local risk of relapse. Two prototypical strategies for implementing this novel paradigm in radiation oncology are reviewed: subvolume boosting and dose painting by numbers. Subvolume boosting involves the selection of a "target within the target," defined by image segmentation on the basis of the quantitative information in the image or morphologically, and this is related to image-based target volume selection and delineation. Dose painting by numbers is a voxel-level prescription of dose based on a mathematical transformation of the image intensity of individual pixels. The quantitative use of images to decide both where and how to delivery radiation therapy in an individual case is also called theragnostic imaging. Dose painting targets are imaging surrogates for cellular or microenvironmental phenotypes associated with poor radioresponsiveness. In this review, the focus is on the following positron emission tomography tracers: FDG and choline as surrogates for tumor burden, fluorothymidine as a surrogate for proliferation (or cellular growth fraction) and hypoxia-sensitive tracers, including [18F] fluoromisonidazole, EF3, EF5, and 64Cu-labeled copper(II) diacetyl-di(N4-methylthiosemicarbazone) as surrogates of cellular hypoxia. Research advances supporting the clinicobiological rationale for dose painting are reviewed as are studies of the technical feasibility of optimizing and delivering realistic dose painted radiation therapy plans. Challenges and research priorities in this exciting research field are defined and a possible design for a randomized clinical trial of dose painting is presented. © 2011 Elsevier Inc.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 100 条
[1]   On biologically conformal boost dose optimization [J].
Alber, M ;
Paulsen, F ;
Eschmann, SM ;
Machulla, HJ .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (02) :N31-N35
[2]   Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models [J].
Apisarnthanarax, Smith ;
Alauddin, Mian M. ;
Mourtada, Firas ;
Ariga, Hisanori ;
Raju, Uma ;
Mawlawi, Osama ;
Han, Dongmei ;
Bornmann, William G. ;
Ajani, Jaffer A. ;
Milas, Luka ;
Gelovani, Juri G. ;
Chao, K. S. Clifford .
CLINICAL CANCER RESEARCH, 2006, 12 (15) :4590-4597
[3]   Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation [J].
Barwick, Tara ;
Bencherif, Badreddine ;
Mountz, James M. ;
Avril, Norbert .
NUCLEAR MEDICINE COMMUNICATIONS, 2009, 30 (12) :908-917
[4]   The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis [J].
Begg, AC ;
Haustermans, K ;
Hart, AAM ;
Dische, S ;
Saunders, M ;
Zackrisson, B ;
Gustaffson, H ;
Coucke, P ;
Paschoud, N ;
Hoyer, M ;
Overgaard, J ;
Antognoni, P ;
Richetti, A ;
Bourhis, J ;
Bartelink, H ;
Horiot, JC ;
Corvo, R ;
Giaretti, W ;
Awwad, H ;
Shouman, T ;
Jouffroy, T ;
Maciorowski, Z ;
Dobrowsky, W ;
Struikmans, H ;
Rutgers, D ;
Wilson, GD .
RADIOTHERAPY AND ONCOLOGY, 1999, 50 (01) :13-23
[5]   The α/β ratio for prostate cancer:: What is it, really? [J].
Bentzen, SM ;
Ritter, MA .
RADIOTHERAPY AND ONCOLOGY, 2005, 76 (01) :1-3
[6]   Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial [J].
Bentzen, SM ;
Atasoy, BM ;
Daley, FM ;
Dische, S ;
Richman, PI ;
Saunders, MI ;
Trott, KR ;
Wilson, GD .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (24) :5560-5567
[7]   Theragnostic imaging for radiation oncology: dose-painting by numbers [J].
Bentzen, SM .
LANCET ONCOLOGY, 2005, 6 (02) :112-117
[8]   Repopulation in radiation oncology: perspectives of clinical research [J].
Bentzen, SM .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2003, 79 (07) :581-585
[9]  
Bentzen Soren M., 2008, P41
[10]   Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck [J].
Bonner, JA ;
Harari, PM ;
Giralt, J ;
Azarnia, N ;
Shin, DM ;
Cohen, RB ;
Jones, CU ;
Sur, R ;
Raben, D ;
Jassem, J ;
Ove, R ;
Kies, MS ;
Baselga, J ;
Youssoufian, H ;
Amellal, N ;
Rowinsky, EK ;
Ang, KK .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (06) :567-578