Cellular automaton rules conserving the number of active sites

被引:63
作者
Boccara, N [1 ]
Fuks, H [1 ]
机构
[1] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 28期
关键词
D O I
10.1088/0305-4470/31/28/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows how to determine ail of the unidimensional two-state cellular automaton rules of a given number of inputs which conserve the number of active sites. These rules have to satisfy a necessary and sufficient condition. If the active sites are viewed as cells occupied by identical particles, these cellular automaton rules represent evolution operators of systems of identical interacting particles whose total number is conserved. Some of these rules, which allow motion in both directions, mimic ensembles of one-dimensional pseudorandom walkers. Numerical evidence indicates that the corresponding stochastic processes might be non-Gaussian.
引用
收藏
页码:6007 / 6018
页数:12
相关论文
共 17 条
[1]  
BOCCARA N, 1993, CELLULAR AUTOMATA CO
[2]  
DENNING PJ, 1978, MACHINES LANGUAGES C
[3]  
FARMER D, 1984, CELLULAR AUTOMATA
[4]  
Feder J., 1988, FRACTALS PLENUM
[5]   Generalized deterministic traffic rules [J].
Fuks, H ;
Boccara, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (01) :1-12
[6]  
FUKUI M, 1995, J PHYS SOC JPN, V64, P1868
[7]  
GUTOWITZ H, 1990, CELLULAR AUTOMATA TH
[8]   LOCAL-STRUCTURE THEORY FOR CELLULAR AUTOMATA [J].
GUTOWITZ, HA ;
VICTOR, JD ;
KNIGHT, BW .
PHYSICA D, 1987, 28 (1-2) :18-48
[9]  
HOPCROFT JE, 1986, FORMAL LANGUAGES THE
[10]  
Hurst H. E., 1965, LONG TERM STORAGE EX