Effective monopole potential for SU(2) lattice gluodynamics in the spatial maximal Abelian gauge

被引:10
作者
Chernodub, MN [1 ]
Polikarpov, MI
Veselov, AI
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Univ Tecn Lisboa, Ctr Fis Interaccoes Fundamentais, Inst Super Tecn, Lisbon, Portugal
关键词
D O I
10.1134/1.568002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dual superconductor hypothesis in finite-temperature SU(2) lattice gluodynamics in the spatial maximal Abelian gauge. This gauge is more physical than the ordinary maximal Abelian gauge due to absence of nonlocalities in the temporal direction. We show numerically that in the spatial maximal Abelian gauge the probability distribution of the Abelian monopole field is consistent with the dual superconductor mechanism of confinement: the Abelian condensate vanishes in the deconfinement phase and is nonzero in the confinement phase. (C) 1999 American Institute of Physics.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 25 条
[1]  
BALI GS, 1998, CONF 3 NEWP NEWS VA
[2]   THE DENSITY OF MONOPOLES IN SU(2) LATTICE GAUGE-THEORY [J].
BORNYAKOV, VG ;
ILGENFRITZ, EM ;
LAURSEN, ML ;
MITRJUSHKIN, VK ;
MULLERPREUSSKER, M ;
VANDERSIJS, AJ ;
ZADOROZHNY, AM .
PHYSICS LETTERS B, 1991, 261 (1-2) :116-122
[3]   Monopole order parameter in SU(2) lattice gauge theory [J].
Chernodub, MN ;
Polikarpov, MI ;
Veselov, AI .
NUCLEAR PHYSICS B, 1996, :307-311
[4]  
Chernodub MN, 1998, PROG THEOR PHYS SUPP, P309, DOI 10.1143/PTPS.131.309
[5]   CONFINEMENT MECHANISM IN VARIOUS ABELIAN PROJECTIONS OF SU(2) LATTICE GLUODYNAMICS [J].
CHERNODUB, MN ;
POLIKARPOV, MI ;
VESELOV, AI .
PHYSICS LETTERS B, 1995, 342 (1-4) :303-310
[6]  
Chernodub MN, 1998, NATO ADV SCI I B-PHY, V368, P387
[7]   Effective constraint potential for Abelian monopole in SU(2) lattice gauge theory [J].
Chernodub, MN ;
Polikarpov, MI ;
Veselov, AI .
PHYSICS LETTERS B, 1997, 399 (3-4) :267-273
[8]  
DELDEBBIO L, 1995, PHYS LETT B, V349, P513, DOI 10.1016/0370-2693(95)00266-N
[9]   COLOR CONFINEMENT AS DUAL MEISSNER EFFECT - SU(2) GAUGE-THEORY [J].
DELDEBBIO, L ;
DIGIACOMO, A ;
PAFFUTI, G ;
PIERI, P .
PHYSICS LETTERS B, 1995, 355 (1-2) :255-259
[10]   SOLITON QUANTIZATION IN LATTICE FIELD-THEORIES [J].
FROHLICH, J ;
MARCHETTI, PA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (02) :343-383