Single-copy entanglement in critical quantum spin chains

被引:89
作者
Eisert, J
Cramer, M
机构
[1] Univ London Imperial Coll Sci Technol & Med, QOLS, Blackett Lab, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BW, England
[3] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevA.72.042112
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results-which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains-are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of similar to(1/6)log(2)(L), and contrast it with the block entropy.
引用
收藏
页数:5
相关论文
共 37 条
[1]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[2]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[3]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[4]   LOCALIZATION THEOREM FOR TOEPLITZ DETERMINANTS [J].
BASOR, EL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (06) :975-983
[5]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[6]   Spatial structures and localization of vacuum entanglement in the linear harmonic chain [J].
Botero, A ;
Reznik, B .
PHYSICAL REVIEW A, 2004, 70 (05) :052329-1
[7]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]  
EHRHARDT T, 1997, THESIS U CHEMNITZ CH
[9]   Entropy growth of shift-invariant states on a quantum spin chain [J].
Fannes, M ;
Haegeman, B ;
Mosonyi, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :6005-6019
[10]  
GIOEV D, QUANTPH0504151