Improved Statistics for Genome-Wide Interaction Analysis

被引:71
作者
Ueki, Masao [1 ,2 ]
Cordell, Heather J. [2 ]
机构
[1] Yamagata Univ, Fac Med, Yamagata 990, Japan
[2] Newcastle Univ, Inst Med Genet, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
PLOS GENETICS | 2012年 / 8卷 / 04期
基金
英国惠康基金;
关键词
GENE-ENVIRONMENT INDEPENDENCE; SUSCEPTIBILITY LOCI; LINKAGE-DISEQUILIBRIUM; SAMPLE-SIZE; COMMON SNPS; ASSOCIATION; DISEASES; DETECT; HERITABILITY; EPISTASIS;
D O I
10.1371/journal.pgen.1002625
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new "joint effects" statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al.'s originally-proposed statistics, on account of the inflated error rate that can result.
引用
收藏
页码:141 / 159
页数:19
相关论文
共 38 条
[1]   A tutorial on statistical methods for population association studies [J].
Balding, David J. .
NATURE REVIEWS GENETICS, 2006, 7 (10) :781-791
[2]   Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease [J].
Barrett, Jeffrey C. ;
Hansoul, Sarah ;
Nicolae, Dan L. ;
Cho, Judy H. ;
Duerr, Richard H. ;
Rioux, John D. ;
Brant, Steven R. ;
Silverberg, Mark S. ;
Taylor, Kent D. ;
Barmada, M. Michael ;
Bitton, Alain ;
Dassopoulos, Themistocles ;
Datta, Lisa Wu ;
Green, Todd ;
Griffiths, Anne M. ;
Kistner, Emily O. ;
Murtha, Michael T. ;
Regueiro, Miguel D. ;
Rotter, Jerome I. ;
Schumm, L. Philip ;
Steinhart, A. Hillary ;
Targan, Stephan R. ;
Xavier, Ramnik J. ;
Libioulle, Cecile ;
Sandor, Cynthia ;
Lathrop, Mark ;
Belaiche, Jacques ;
Dewit, Olivier ;
Gut, Ivo ;
Heath, Simon ;
Laukens, Debby ;
Mni, Myriam ;
Rutgeerts, Paul ;
Van Gossum, Andre ;
Zelenika, Diana ;
Franchimont, Denis ;
Hugot, Jean-Pierre ;
de Vos, Martine ;
Vermeire, Severine ;
Louis, Edouard ;
Cardon, Lon R. ;
Anderson, Carl A. ;
Drummond, Hazel ;
Nimmo, Elaine ;
Ahmad, Tariq ;
Prescott, Natalie J. ;
Onnie, Clive M. ;
Fisher, Sheila A. ;
Marchini, Jonathan ;
Ghori, Jilur .
NATURE GENETICS, 2008, 40 (08) :955-962
[3]   SAMPLE SIZES REQUIRED TO DETECT LINKAGE DISEQUILIBRIUM BETWEEN 2 OR 3 LOCI [J].
BROWN, AHD .
THEORETICAL POPULATION BIOLOGY, 1975, 8 (02) :184-201
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]   Detecting association using epistatic information [J].
Chapman, Juliet ;
Clayton, David .
GENETIC EPIDEMIOLOGY, 2007, 31 (08) :894-909
[6]   Serniparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies [J].
Chatterjee, N ;
Carroll, RJ .
BIOMETRIKA, 2005, 92 (02) :399-418
[7]   Large-scale Exploration of Gene-Gene Interactions in Prostate Cancer Using a Multistage Genome-wide Association Study [J].
Ciampa, Julia ;
Yeager, Meredith ;
Amundadottir, Laufey ;
Jacobs, Kevin ;
Kraft, Peter ;
Chung, Charles ;
Wacholder, Sholom ;
Yu, Kai ;
Wheeler, William ;
Thun, Michael J. ;
Divers, W. Ryan ;
Gapstur, Susan ;
Albanes, Demetrius ;
Virtamo, Jarmo ;
Weinstein, Stephanie ;
Giovannucci, Edward ;
Willett, Walter C. ;
Cancel-Tassin, Geraldine ;
Cussenot, Olivier ;
Valeri, Antoine ;
Hunter, David ;
Hoover, Robert ;
Thomas, Gilles ;
Chanock, Stephen ;
Chatterjee, Nilanjan .
CANCER RESEARCH, 2011, 71 (09) :3287-3295
[8]   Prediction and Interaction in Complex Disease Genetics: Experience in Type 1 Diabetes [J].
Clayton, David G. .
PLOS GENETICS, 2009, 5 (07)
[9]   Detecting gene-gene interactions that underlie human diseases [J].
Cordell, Heather J. .
NATURE REVIEWS GENETICS, 2009, 10 (06) :392-404
[10]   Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans [J].
Cordell, HJ .
HUMAN MOLECULAR GENETICS, 2002, 11 (20) :2463-2468