AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator

被引:301
作者
Okushima, Y [1 ]
Mitina, I [1 ]
Quach, HL [1 ]
Theologis, A [1 ]
机构
[1] Ctr Plant Gene Express, Albany, CA 94710 USA
关键词
growth; senescence; auxin response factor; ACC synthase;
D O I
10.1111/j.1365-313X.2005.02426.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
AUXIN Response Factors (ARFs) regulate auxin-mediated transcriptional activation/repression. They are encoded by a gene family in Arabidopsis, and each member is thought to play a central role in various auxin-mediated developmental processes. We have characterized three arf2 mutant alleles, arf2-6, arf2-7 and arf2-8. The mutants exhibit pleiotropic developmental phenotypes, including large, dark green rosette leaves, delayed flowering, thick and long inflorescence, abnormal flower morphology and sterility in early formed flowers, large organ size and delayed senescence and abscission, compared with wild-type plants. In addition, arf2 mutant seedlings have elongated hypocotyls with enlarged cotyledons under various light conditions. The transcription of ACS2, ACS6 and ACS8 genes is impaired in the developing siliques of arf2-6. The phenotypes of all three alleles are similar to those of the loss-of-function mutants obtained by RNA interference or co-suppression. There is no significant effect of the mutation on global auxin-regulated gene expression in young seedlings, suggesting that ARF2 does not participate in auxin signaling at that particular developmental stage of the plant life cycle. Because ARF2 is thought to function as a transcriptional repressor, the prospect arises that its pleiotropic effects may be mediated by negatively modulating the transcription of downstream genes in signaling pathways that are involved in cell growth and senescence.
引用
收藏
页码:29 / 46
页数:18
相关论文
共 85 条
[1]   Early genes and auxin action [J].
Abel, S ;
Theologis, A .
PLANT PHYSIOLOGY, 1996, 111 (01) :9-17
[2]   EARLY AUXIN-INDUCED GENES ENCODE SHORT-LIVED NUCLEAR PROTEINS [J].
ABEL, S ;
OELLER, PW ;
THEOLOGIS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (01) :326-330
[3]   DNA elements responsive to auxin [J].
Abel, S ;
Ballas, N ;
Wong, LM ;
Theologis, A .
BIOESSAYS, 1996, 18 (08) :647-654
[4]   Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues [J].
An, YQ ;
McDowell, JM ;
Huang, SR ;
McKinney, EC ;
Chambliss, S ;
Meagher, RB .
PLANT JOURNAL, 1996, 10 (01) :107-121
[5]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824
[6]   Last exit: Senescence, abscission, and meristem arrest in Arabidopsis [J].
Bleecker, AB ;
Patterson, SE .
PLANT CELL, 1997, 9 (07) :1169-1179
[7]  
BOERJAN W, 1995, PLANT CELL, V7, P1405, DOI 10.1105/tpc.7.9.1405
[8]   INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in arabidopsis and identifies a novel family of putative ligands in plants [J].
Butenko, MA ;
Patterson, SE ;
Grini, PE ;
Stenvik, GE ;
Amundsen, SS ;
Mandal, A ;
Aalen, RB .
PLANT CELL, 2003, 15 (10) :2296-2307
[9]   Cryptochromes: Blue light receptors for plants and animals [J].
Cashmore, AR ;
Jarillo, JA ;
Wu, YJ ;
Liu, DM .
SCIENCE, 1999, 284 (5415) :760-765
[10]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144