A variational method for extended nonlinear Schrodinger systems

被引:13
作者
Bergé, L [1 ]
Couairon, A [1 ]
机构
[1] CEA Bruyeres Chatel, F-91680 Bruyeres Le Chatel, France
关键词
variational method; nonlinear Schrodinger systems; dynamical equations;
D O I
10.1016/S0167-2789(01)00208-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a variational procedure for solving nonlinear Schrodinger equations in the form i delta -u+Deltau+q/u/(2)+F(u) = 0, where F(u) is an arbitrary function of u, being perturbative or not. This method provides a general dynamical system describing the typical length scale of localized solutions u and it includes a relation for the power lost by these solutions in dissipative systems. The complete set of dynamical equations is then applied to models describing the propagation of high-power beams in gases, which involve saturating nonlinearities, multiphoton sources and nonlinear dissipation as well. Theoretical results are confronted with numerical simulations. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:752 / 762
页数:11
相关论文
共 27 条
[21]   Dynamic spatial replenishment of femtosecond pulses propagating in air [J].
Mlejnek, M ;
Wright, EM ;
Moloney, JV .
OPTICS LETTERS, 1998, 23 (05) :382-384
[22]   Femtosecond pulse propagation in argon: A pressure dependence study [J].
Mlejnek, M ;
Wright, EM ;
Moloney, JV .
PHYSICAL REVIEW E, 1998, 58 (04) :4903-4910
[23]   BLOW-UP IN NONLINEAR SCHROEDINGER EQUATIONS .1. A GENERAL-REVIEW [J].
RASMUSSEN, JJ ;
RYPDAL, K .
PHYSICA SCRIPTA, 1986, 33 (06) :481-497
[24]  
Vlasov S. N., 1989, Soviet Physics - JETP, V68, P1125
[25]   NON-LINEAR SCHRODINGER-EQUATIONS AND SHARP INTERPOLATION ESTIMATES [J].
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :567-576
[26]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62
[27]  
ZAKHAROV VE, 1972, ZH EKSP TEOR FIZ, V35, P908