Correlation functions and momentum distribution of one-dimensional Bose systems

被引:86
作者
Astrakharchik, GE [1 ]
Giorgini, S
机构
[1] Univ Trent, Dipartimento Fis, I-38050 Povo, Italy
[2] Univ Trent, INFM, BEC, I-38050 Povo, Italy
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 03期
关键词
D O I
10.1103/PhysRevA.68.031602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The ground-state correlation properties of a one-dimensional Bose system described by the Lieb-Liniger Hamiltonian are investigated by using exact quantum Monte Carlo techniques. The pair distribution function, static structure factor, one-body density matrix, and momentum distribution of a homogeneous system are calculated for different values of the gas parameter ranging from the Tonks-Girardeau to the mean-field regime. Results for the momentum distribution of a harmonically trapped gas in configurations relevant to experiments are also presented.
引用
收藏
页数:4
相关论文
共 18 条
[11]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .1. GENERAL SOLUTION AND GROUND STATE [J].
LIEB, EH ;
LINIGER, W .
PHYSICAL REVIEW, 1963, 130 (04) :1605-+
[12]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .2. EXCITATION SPECTRUM [J].
LIEB, EH .
PHYSICAL REVIEW, 1963, 130 (04) :1616-+
[14]  
OLSHANII M, CONDMAT0210629
[15]  
REATTO L, 1967, PHYS REV, V155, P155
[16]   Quasipure Bose-Einstein condensate immersed in a Fermi sea - art.no. 080403 [J].
Schreck, F ;
Khaykovich, L ;
Corwin, KL ;
Ferrari, G ;
Bourdel, T ;
Cubizolles, J ;
Salomon, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (08) :804031-804034
[17]   NOTE ON 1-DIMENSIONAL GAS OF IMPENETRABLE POINT-PARTICLE BOSONS [J].
SCHULTZ, TD .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (05) :666-+
[18]   OFF-DIAGONAL LONG-RANGE BEHAVIOR OF INTERACTING BOSE SYSTEMS [J].
SCHWARTZ, M .
PHYSICAL REVIEW B, 1977, 15 (03) :1399-1403