Strontium and barium iodide high light yield scintillators

被引:311
作者
Cherepy, Nerine J. [1 ]
Hull, Giulia [1 ]
Drobshoff, Alexander D. [1 ]
Payne, Stephen A. [1 ]
Van Loef, Edgar [2 ]
Wilson, Cody M. [2 ]
Shah, Kanai S. [2 ]
Roy, Utpal N. [3 ]
Burger, Arnold [3 ]
Boatner, Lynn A. [4 ]
Choong, Woon-Seng [5 ]
Moses, William W. [5 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Radiat Monitoring Devices Inc, Boston, MA 02134 USA
[3] Fisk Univ, Ctr Phys & Chem Mat, Nashville, TN 37208 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
This work was supported by the Domestic Nuclear Detection Office in the Department of Homeland Security and by the NNSA; Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098; and was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Oak Ridge National Laboratory is managed for the U.S; DOE by UT-Battelle under Contract No. DE-AC05-00OR22725;
D O I
10.1063/1.2885728
中图分类号
O59 [应用物理学];
学科分类号
摘要
Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu) emits into the Eu(2+) band, centered at 435 nm, with a decay time of 1.2 mu s and a light yield of similar to 90 00 photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662 keV, and exhibits excellent light yield proportionality. BaI(2)(Eu) produces >30 000 photons/MeV into the Eu(2+) band at 420 nm (<1 mu s decay). An additional broad impurity-mediated recombination band is present at 550 nm (>3 mu s decay), unless high-purity feedstock is used. (c) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 12 条
[1]   CRYSTAL STRUCTURE OF MONOCLINIC EUROPIUM(2) IODIDE EUI2 [J].
BARNIGHAUSEN, H ;
SCHULTZ, N .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1969, B 25 :1104-+
[2]  
CHOONG WS, UNPUB IEEE T NUCL SC
[3]   Gamma-ray spectroscopy with LaBr3:Ce scintillator readout by a silicon drift detector [J].
Fiorini, C. ;
Gola, A. ;
Zanchi, M. ;
Longoni, A. ;
Lechner, P. ;
Soltau, H. ;
Strueder, L. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (04) :2392-2397
[4]   CAI2 + CAI2(EU) SCINTILLATION CRYSTALS [J].
HOFSTADTER, R ;
SCHMIDT, CT ;
ODELL, EW .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1964, NS11 (03) :12-&
[5]  
Hofstadter R., 1968, US patent, Patent No. [3 373 279, 3373279, 3,373,279]
[6]  
HULL G, UNPUB IEEE T NUCL SC
[7]   A NEW TYPE OF LUMINESCENCE MECHANISM IN LARGE BAND-GAP INSULATORS - PROPOSAL FOR FAST SCINTILLATION MATERIALS [J].
KUBOTA, S ;
RUAN, J ;
ITOH, M ;
HASHIMOTO, S ;
SAKURAGI, S .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 289 (1-2) :253-260
[8]   HETEROGENEOUS HALIDE-SILICA PHOSPHORS [J].
LEHMANN, W .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1975, 122 (06) :748-752
[9]   Progress in fast scintillators [J].
Rodnyi, PA .
RADIATION MEASUREMENTS, 2001, 33 (05) :605-614
[10]   Europium-doped barium halide scintillators for x-ray and γ-ray detections [J].
Selling, J. ;
Birowosuto, M. D. ;
Dorenbos, P. ;
Schweizer, S. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (03)