Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation

被引:126
作者
Shapiro, Alexander [1 ]
Xu, Huifu [2 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Univ Southampton, Sch Math, Southampton, Hants, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
stochastic programming; equilibrium constraints; Stackelberg-Nash-Cournot equilibrium; variational inequality; sample average approximation; exponential convergence; smoothing;
D O I
10.1080/02331930801954177
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate the structure of both - the lower level equilibrium solution and objective integrand. We show almost sure convergence of optimal values, optimal solutions (both local and global) and generalized Karush-Kuhn-Tucker points of the SAA program to their true counterparts. We also study uniform exponential convergence of the sample average approximations, and as a consequence derive estimates of the sample size required to solve the true problem with a given accuracy. Finally, we present some preliminary numerical test results.
引用
收藏
页码:395 / 418
页数:24
相关论文
共 31 条
[1]  
Bonnans JF., 2013, PERTURBATION ANAL OP
[2]   Stochastic bilevel programming in structural optimization [J].
Christiansen, S ;
Patriksson, M ;
Wynter, L .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2001, 21 (05) :361-371
[3]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[4]   ASYMPTOTIC-BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL-SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS [J].
DUPACOVA, J ;
WETS, R .
ANNALS OF STATISTICS, 1988, 16 (04) :1517-1549
[5]   On the existence of solutions to stochastic mathematical programs with equilibrium constraints [J].
Evgrafov, A ;
Patriksson, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 121 (01) :65-76
[6]  
Facchinei F, 2003, Finite-Dimensional Variational Inequalities and Complementary Problems, VII
[7]  
Fischer A., 1992, Optimization, V24, P269, DOI 10.1080/02331939208843795
[8]   Sample-path solution of stochastic variational inequalities [J].
Gürkan, G ;
Özge, AY ;
Robinson, SM .
MATHEMATICAL PROGRAMMING, 1999, 84 (02) :313-333
[9]   Smooth SQP methods for mathematical programs with nonlinear complementarity constraints [J].
Jiang, HY ;
Ralph, D .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :779-808
[10]   Some noninterior continuation methods for linear complementarity problems [J].
Kanzow, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :851-868