Development of hybrid Mg/Al2O3 composites with improved properties using microwave assisted rapid sintering route

被引:55
作者
Wong, WLE [1 ]
Karthik, S [1 ]
Gupta, M [1 ]
机构
[1] Natl Univ Singapore, Dept Engn Mech, Singapore 117576, Singapore
关键词
D O I
10.1007/s10853-005-0419-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, hybrid magnesium based composites reinforced with an equivalent of 5 vol.% of micron and nano-sized Al2O3 particulates were synthesized using powder metallurgy technique incorporating an innovative microwave assisted rapid sintering technique. Microstructural characterization revealed near equiaxed grain morphology and the presence of minimal porosity in all the samples. Mechanical characterization studies revealed that the coupled addition of micron and nano-sized particulate reinforcements in magnesium matrix leads to a significant increase in hardness, elastic modulus, 0.2% yield strength, ultimate tensile strength and a decrease in ductility when compared to pure magnesium. Tensile testing results further revealed an increase in elastic modulus and ductility with no apparent change in the 0.2% yield strength and ultimate tensile strength of the hybrid composites upon the addition of nano-sized alumina particulates from 0.5 to 0.75 volume percent. With an increase in nano-sized alumina particulates from 0.75 to 1%, the overall mechanical properties of the hybrid composites were enhanced with an increase being observed in the elastic modulus, 0.2% yield strength and ductility of the composites. An attempt is made in this study to investigate the feasibility of the processing methodology and to study the effects of the addition of particulate reinforcements of different sizes on the microstructure, physical and mechanical properties of magnesium. (c) 2005 Springer Science + Business Media, Inc.
引用
收藏
页码:3395 / 3402
页数:8
相关论文
共 26 条
[1]  
Agrawal D, 1999, MATER WORLD, V7, P672
[2]  
[Anonymous], 1998, MAGNESIUM ALLOYS THE
[3]  
Boccaccini A. R., 1993, J MECH BEHAV MATER, V4, P119, DOI [10.1515/JMBM.1993.4.2.119, DOI 10.1515/JMBM.1993.4.2.119]
[4]  
BUCH A, 1999, PURE METALS PROPERTI, P20
[5]   Young's modulus of nanocrystalline Fe measured by nanoindentation [J].
Fougere, GE ;
Riester, L ;
Ferber, M ;
Weertman, JR ;
Siegel, RW .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 204 (1-2) :1-6
[6]  
GEIGER AL, 1989, ADV MATER PROCESS, V136, P23
[7]  
German R.M., 1984, Powder Metallurgy Science
[8]  
GERMAN RM, 1996, SINTERING THEORY PRA, P2
[9]   Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites [J].
Gupta, M ;
Lai, MO ;
Saravanaranganathan, D .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (09) :2155-2165
[10]   MICROSTRUCTURE AND PROPERTIES OF SPRAY ATOMIZED AND DEPOSITED AL-7SI/SICP METAL MATRIX COMPOSITES [J].
GUPTA, M ;
LANE, C ;
LAVERNIA, EJ .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 26 (05) :825-830