Riemannian geometry of Grassmann manifolds with a view on algorithmic computation

被引:244
作者
Absil, PA [1 ]
Mahony, R
Sepulchre, R
机构
[1] Florida State Univ, Sch Computat Sci & Informat Technol, Tallahassee, FL 32306 USA
[2] Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia
[3] Univ Liege, Dept Elect Engn & Comp Sci, B-4000 Liege, Belgium
关键词
D O I
10.1023/B:ACAP.0000013855.14971.91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in R-n. In these formulas, p-planes are represented as the column space of n x p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications - computing an invariant subspace of a matrix and the mean of subspaces - are worked out.
引用
收藏
页码:199 / 220
页数:22
相关论文
共 38 条
[1]   A Grassmann-Rayleigh quotient iteration for computing invariant subspaces [J].
Absil, PA ;
Mahony, R ;
Sepulchre, R ;
Van Dooren, P .
SIAM REVIEW, 2002, 44 (01) :57-73
[2]  
ABSIL PA, 2002, UNPUB SIAM J MATRIX
[3]  
ABSIL PA, 2003, THESIS U LIEGE LIEGE
[4]  
ABSIL PA, IN PRESS SIAM J MATR
[5]  
[Anonymous], 1992, RIEMANNIAN GEOMETRY
[6]   NUMERICAL METHODS FOR COMPUTING ANGLES BETWEEN LINEAR SUBSPACES [J].
BJORCK, A ;
GOLUB, GH .
MATHEMATICS OF COMPUTATION, 1973, 27 (123) :579-594
[7]  
Boothby W. M., 1975, An introduction to differentiable manifolds and Riemannian geometry
[8]  
CHATELIN F, 1984, COMPUTING S, V5, P67
[9]  
CHAVEL I, 1993, RIEMMANIAN GEOMETRY
[10]  
COMMON P, 1990, P IEEE, V78, P1327