Culture systems for pluripotent stem cells

被引:104
作者
Ulloa-Montoya, F
Verfaillie, CM
Hu, WS
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Med, Stem Cell Inst, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Med, Div Hematol, Minneapolis, MN 55455 USA
关键词
embryonic stem cell; adult stem cell; bioreactor; pluripotent;
D O I
10.1263/jbb.100.12
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Pluripotent stem cells have the capacity to self renew and to differentiate to cells of the three somatic germ layers that comprise an organism. Embryonic stem cells are the most studied pluripotent stem cells. Pluripotent stem cells have also been derived from adult tissues. Both embryonic and adult stem cells represent valuable sources of cells for applications in cell therapy, drug screening and tissue engineering. While expanding stem cells in culture, it is critical to maintain their self-renewal and differentiation capacity. In generating particular cell types for specific applications, it is important to direct their differentiation to the desired lineage. Challenges in expansion of undifferentiated stem cells for clinical applications include the removal of feeder layers and non-defined components in the culture medium. Our limited basic knowledge on the requirements for maintaining pluripotency of adult pluripotent stem cells and the lack of appropriate markers associated with pluripotency hinders the progress toward their wide spread application. In vitro differentiation of stem cells usually produces a mixed population of different cell lineages with the desired cell type present only at a small proportion. Use of growth factors that promote differentiation, expansion or survival of specific cell types is key in controlling the differentiation towards specific cell lineages. A variety of bioreactors for cell cultivation exist and can be readily adapted for stem cell cultivation and differentiation. They provide a well-controlled environment for studying the process of stem cell propagation and differentiation. Their wide use will facilitate the development of processes for stem cell application.
引用
收藏
页码:12 / 27
页数:16
相关论文
共 132 条
[1]   Structural polarity and functional bile canaliculi in rat hepatocyte spheroids [J].
Abu-Absi, SF ;
Friend, JR ;
Hansen, LK ;
Hu, WS .
EXPERIMENTAL CELL RESEARCH, 2002, 274 (01) :56-67
[2]   Hepatic stem cells [J].
Alison, M ;
Sarraf, C .
JOURNAL OF HEPATOLOGY, 1998, 29 (04) :676-682
[3]   Human feeder layers for human embryonic stem cells [J].
Amit, M ;
Margulets, V ;
Segev, H ;
Shariki, K ;
Laevsky, I ;
Coleman, R ;
Itskovitz-Eldor, J .
BIOLOGY OF REPRODUCTION, 2003, 68 (06) :2150-2156
[4]   Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture [J].
Amit, M ;
Carpenter, MK ;
Inokuma, MS ;
Chiu, CP ;
Harris, CP ;
Waknitz, MA ;
Itskovitz-Eldor, J ;
Thomson, JA .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :271-278
[5]   Feeder layer- and serum-free culture of human embryonic stem cells [J].
Amit, M ;
Shariki, C ;
Margulets, V ;
Itskovitz-Eldor, J .
BIOLOGY OF REPRODUCTION, 2004, 70 (03) :837-845
[6]   Insulin production by human embryonic stem cells [J].
Assady, S ;
Maor, G ;
Amit, M ;
Itskovitz-Eldor, J ;
Skorecki, KL ;
Tzukerman, M .
DIABETES, 2001, 50 (08) :1691-1697
[7]   Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device [J].
Bagley, J ;
Rosenzweig, M ;
Marks, DF ;
Pykett, MJ .
EXPERIMENTAL HEMATOLOGY, 1999, 27 (03) :496-504
[8]   Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy [J].
Baksh, D ;
Song, L ;
Tuan, RS .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2004, 8 (03) :301-316
[9]   Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion [J].
Baksh, D ;
Davies, JE ;
Zandstra, PW .
EXPERIMENTAL HEMATOLOGY, 2003, 31 (08) :723-732
[10]   Confocal laser scanning microscopy examination of cell distribution in macroporous microcarriers [J].
Bancel, S ;
Hu, WS .
BIOTECHNOLOGY PROGRESS, 1996, 12 (03) :398-402