A biophysical perspective on the cellulosome: new opportunities for biomass conversion

被引:67
作者
Ding, Shi-You [1 ]
Xu, Qi [1 ]
Crowley, Michael [1 ]
Zeng, Yining [1 ]
Nimlos, Mark [2 ]
Lamed, Raphael [3 ]
Bayer, Edward A. [4 ]
Himmel, Michael E. [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[3] Tel Aviv Univ, Dept Mol Microbiol & Biotechnol, IL-69978 Tel Aviv, Israel
[4] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
D O I
10.1016/j.copbio.2008.04.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The cellulosome is a multiprotein complex, produced primarily by anaerobic microorganisms, which functions to degrade lignocellulosic materials. An important topic of current debate is whether cellulosomal systems display greater ability to deconstruct complex biomass materials (e.g. plant cell walls) than nonaggregated enzymes, and in so doing would be appropriate for improved, commercial bioconversion processes. To sufficiently understand the complex macromolecular processes between plant cell wall polymers, cellulolytic microbes, and their secreted enzymes, a highly concerted research approach is required. Adaptation of existing biophysical techniques and development of new science tools must be applied to this system. This review focuses on strategies likely to permit improved understanding of the bacterial cellulosome using biophysical approaches, with emphasis on advanced imaging and computational techniques.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 70 条
[1]  
Atalla RH, 2008, BIOMASS RECALCITRANC, P188
[2]   A coarse-grained molecular model for glycosaminoglycans: Application to chondroitin, chondroitin sulfate, and hyaluronic acid [J].
Bathe, M ;
Rutledge, GC ;
Grodzinsky, AJ ;
Tidor, B .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3870-3887
[3]   The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides [J].
Bayer, EA ;
Belaich, JP ;
Shoham, Y ;
Lamed, R .
ANNUAL REVIEW OF MICROBIOLOGY, 2004, 58 :521-554
[4]   ORGANIZATION AND DISTRIBUTION OF THE CELLULOSOME IN CLOSTRIDIUM-THERMOCELLUM [J].
BAYER, EA ;
SETTER, E ;
LAMED, R .
JOURNAL OF BACTERIOLOGY, 1985, 163 (02) :552-559
[5]   THE CELLULOSOME - A TREASURE-TROVE FOR BIOTECHNOLOGY [J].
BAYER, EA ;
MORAG, E ;
LAMED, R .
TRENDS IN BIOTECHNOLOGY, 1994, 12 (09) :379-386
[6]   Cellulosomes - Structure and ultrastructure [J].
Bayer, EA ;
Shimon, LJW ;
Shoham, Y ;
Lamed, R .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 124 (2-3) :221-234
[7]   Cellulose, cellulases and cellulosomes [J].
Bayer, EA ;
Chanzy, H ;
Lamed, R ;
Shoham, Y .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (05) :548-557
[8]   ULTRASTRUCTURE OF THE CELL-SURFACE CELLULOSOME OF CLOSTRIDIUM-THERMOCELLUM AND ITS INTERACTION WITH CELLULOSE [J].
BAYER, EA ;
LAMED, R .
JOURNAL OF BACTERIOLOGY, 1986, 167 (03) :828-836
[9]   The potential of cellulases and cellulosomes for cellulosic waste management [J].
Bayer, Edward A. ;
Lamed, Raphael ;
Himmel, Michael E. .
CURRENT OPINION IN BIOTECHNOLOGY, 2007, 18 (03) :237-245
[10]   Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A [J].
Boisset, C ;
Fraschini, C ;
Schülein, M ;
Henrissat, B ;
Chanzy, H .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (04) :1444-1452