Complete treatment of uncertainties in a model for dengue R0 estimation

被引:11
作者
Coelho, Flavio Codeco [1 ]
Codeco, Claudia Torres [1 ]
Struchiner, Claudio Jose [1 ]
机构
[1] Fundacao Oswaldo Cruz, Programa Computacao Cient, BR-21040900 Rio De Janeiro, RJ, Brazil
来源
CADERNOS DE SAUDE PUBLICA | 2008年 / 24卷 / 04期
关键词
Bayes theorem; dengue; epidemiologic models; uncertainty;
D O I
10.1590/S0102-311X2008000400016
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In real epidemic processes, the basic reproduction number R-0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R-0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set.
引用
收藏
页码:853 / 861
页数:9
相关论文
共 14 条
[1]   Bayesian analysis of an epidemiologic model of Plasmodium falciparum malaria infection in Ndiop, Senegal [J].
Cancré, N ;
Tall, A ;
Rogier, C ;
Faye, J ;
Sarr, O ;
Trape, JF ;
Spiegel, A ;
Bois, F .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2000, 152 (08) :760-770
[2]   Model parameters and outbreak control for SARS [J].
Chowell, G ;
Castillo-Chavez, C ;
Fenimore, PW ;
Kribs-Zaleta, CM ;
Arriola, L ;
Hyman, JM .
EMERGING INFECTIOUS DISEASES, 2004, 10 (07) :1258-1263
[3]  
Dietz K, 1993, Stat Methods Med Res, V2, P23, DOI 10.1177/096228029300200103
[4]   Bayesian analysis of botanical epidemics using stochastic compartmental models [J].
Gibson, GJ ;
Kleczkowski, A ;
Gilligan, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12120-12124
[5]   The selection of prior distributions by formal rules [J].
Kass, RE ;
Wasserman, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :1343-1370
[6]  
Laplace PS., 1825, ESSAI PHILOS PROBABI
[7]   Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil [J].
Luz, PM ;
Codeço, CT ;
Massad, E ;
Struchiner, CJ .
MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2003, 98 (07) :871-878
[8]  
MACDONALD G, 1952, Trop Dis Bull, V49, P813
[9]   THE BASIC REPRODUCTION NUMBER FOR DENGUE FEVER IN SAO-PAULO STATE, BRAZIL - 1990-1991 EPIDEMIC [J].
MARQUES, CA ;
FORATTINI, OP ;
MASSAD, E .
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 1994, 88 (01) :58-59
[10]   Dengue and the risk of urban yellow fever reintroduction in Sao Paulo State, Brazil [J].
Massad, E ;
Burattini, MN ;
Coutinho, FAB ;
Lopez, LF .
REVISTA DE SAUDE PUBLICA, 2003, 37 (04) :477-484