Chaos suppression in the large size limit for long-range systems

被引:29
作者
Firpo, MC
Ruffo, S
机构
[1] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
[2] INFM, Florence, Italy
[3] Ist Nazl Fis Nucl, I-50125 Florence, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 37期
关键词
D O I
10.1088/0305-4470/34/37/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the class of long-range Hamiltonian systems first introduced by Anteneodo and Tsallis and called the alpha -XY model. This involves N classical rotators on a d-dimensional periodic lattice interacting all to all with an attractive coupling whose strength decays as r(-alpha), r being the distance between sites. Using a recent geometrical approach, we estimate for any d-dimensional lattice the scaling of the largest Lyapunov exponent (LLE) with N, as a function of a in the large energy regime where rotators behave almost freely. We find that the LLE vanishes as N-kappa, with kappa = 1/3 for 0 less than or equal to alpha /d less than or equal to 1/2 and kappa = 2/3(1 - alpha /d) for 1/2 less than or equal to alpha /d < 1. These analytical results present a nice agreement with numerical results obtained by Campa et al, including deviations at small N.
引用
收藏
页码:L511 / L518
页数:8
相关论文
共 20 条
[1]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[2]   Inequivalence of ensembles in a system with long-range Interactions -: art. no. 030601 [J].
Barré, J ;
Mukamel, D ;
Ruffo, S .
PHYSICAL REVIEW LETTERS, 2001, 87 (03) :30601-1
[3]  
BARRE J, 2001, CONDMAT0102036
[4]   Canonical solution of a system of long-range interacting rotators on a lattice [J].
Campa, A ;
Giansanti, A ;
Moroni, D .
PHYSICAL REVIEW E, 2000, 62 (01) :303-306
[5]   Classical spin systems with long-range interactions: universal reduction of mixing [J].
Campa, A ;
Giansanti, A ;
Moroni, D ;
Tsallis, C .
PHYSICS LETTERS A, 2001, 286 (04) :251-256
[6]  
CAMPA A, 2000, CONDMAT0007104
[7]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984
[8]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[9]   Geometric approach to Hamiltonian dynamics and statistical mechanics [J].
Casetti, L ;
Pettini, M ;
Cohen, EGD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03) :237-341
[10]   Analytic estimation of the Lyapunov exponent in a mean-field model undergoing a phase transition [J].
Firpo, MC .
PHYSICAL REVIEW E, 1998, 57 (06) :6599-6603