Analytic estimation of the Lyapunov exponent in a mean-field model undergoing a phase transition

被引:69
作者
Firpo, MC [1 ]
机构
[1] Univ Provence, CNRS, UMR 6633, Equipe Turbulence Plasma,Ctr St Jerome, F-13397 Marseille 20, France
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 06期
关键词
D O I
10.1103/PhysRevE.57.6599
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The parametric instability contribution to the largest Lyapunov exponent lambda(1) is derived for a mean-field Hamiltonian model, with attractive long-range interactions. This uses a recent Riemannian approach to de scribe Hamiltonian chaos with a large number N of degrees of freedom. Through microcanonical estimates of suitable geometrical observables, the mean-field behavior of lambda(1) is analytically computed and related to the second-order phase transition undergone by the system. It predicts that chaoticity drops to zero at the critical temperature and remains vanishing above it, with lambda(1) scaling as N-(1/3) to the leading order in N.
引用
收藏
页码:6599 / 6603
页数:5
相关论文
共 20 条
[1]  
[Anonymous], STUDIA SC MATH HUNGA
[2]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[3]  
ANTONI M, COMMUNICATION
[4]  
Balian R., 1991, From Microphysics to Macrophysics, DOI [10.1007/978-3-540-45475-5, DOI 10.1007/978-3-540-45475-5]
[5]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[6]   Geometry of dynamics and phase transitions in classical lattice φ4 theories [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, G ;
Pettini, M ;
Gatto, R .
PHYSICAL REVIEW E, 1998, 57 (04) :3886-3899
[7]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984
[8]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[9]   Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems [J].
CerrutiSola, M ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 53 (01) :179-188
[10]   Equilibrium statistical mechanics of one-dimensional Hamiltonian systems with long-range force [J].
Elskens, Y ;
Antoni, M .
PHYSICAL REVIEW E, 1997, 55 (06) :6575-6581