Geometry of dynamics and phase transitions in classical lattice φ4 theories

被引:53
作者
Caiani, L
Casetti, L
Clementi, C
Pettini, G
Pettini, M
Gatto, R
机构
[1] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[4] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy
[5] Osserv Astrofis Arcetri, I-50125 Florence, Italy
[6] INFM, Unita Trieste, Trieste, Italy
[7] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy
[8] INFM, Unita Firenze, Florence, Italy
关键词
D O I
10.1103/PhysRevE.57.3886
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a microcanonical study of classical lattice phi(4) field models in three dimensions with O(n) symmetries. The Hamiltonian flows associated with these systems that undergo a second-order phase transition in the thermodynamic limit are investigated here. The microscopic Hamiltonian dynamics neatly reveals the presence of a phase transition through the time averages of conventional thermodynamical observables. Moreover, peculiar behaviors of the largest Lyapounov exponents at the transition point are observed. A Riemannian geometrization of Hamiltonian dynamics is then used to introduce other relevant observables, which are measured as functions of both energy density and temperature. On the basis of a simple and abstract geometric model, we suggest that the apparently singular behavior of these geometric observables might probe a major topological change of the manifolds whose geodesics are the natural motions.
引用
收藏
页码:3886 / 3899
页数:14
相关论文
共 41 条
  • [1] [Anonymous], PHYS REP
  • [2] CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS
    ANTONI, M
    RUFFO, S
    [J]. PHYSICAL REVIEW E, 1995, 52 (03): : 2361 - 2374
  • [3] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [4] FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS
    BINDER, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02): : 119 - 140
  • [5] UNIVERSAL BEHAVIOR OF LYAPUNOV EXPONENTS IN UNSTABLE SYSTEMS
    BONASERA, A
    LATORA, V
    RAPISARDA, A
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (19) : 3434 - 3437
  • [6] PHASE-TRANSITIONS AND LYAPUNOV CHARACTERISTIC EXPONENTS
    BUTERA, P
    CARAVATI, G
    [J]. PHYSICAL REVIEW A, 1987, 36 (02): : 962 - 964
  • [7] Geometry of dynamics, Lyapunov exponents, and phase transitions
    Caiani, L
    Casetti, L
    Clementi, C
    Pettini, M
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (22) : 4361 - 4364
  • [8] ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY
    CASETTI, L
    PETTINI, M
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4320 - 4332
  • [9] EFFICIENT SYMPLECTIC ALGORITHMS FOR NUMERICAL SIMULATIONS OF HAMILTONIAN FLOWS
    CASETTI, L
    [J]. PHYSICA SCRIPTA, 1995, 51 (01) : 29 - 34
  • [10] Riemannian theory of Hamiltonian chaos and Lyapunov exponents
    Casetti, L
    Clementi, C
    Pettini, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (06): : 5969 - 5984