FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties

被引:985
作者
Shi, JY [1 ]
Blundell, TL [1 ]
Mizuguchi, K [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
关键词
structural environment; substitution table; structure-dependent gap penalty; fold recognition; structural profiles;
D O I
10.1006/jmbi.2001.4762
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FUGUE, a program for recognizing distant homologues by sequence-structure comparison (http://www-cryst.bioc.cam.ac.uk/fugue/) has three key features. (1) Improved environment-specific substitution tables. Substitutions of an amino acid in a protein structure are constrained by its local structural environment, which can be defined in terms of secondary structure, solvent accessibility, and hydrogen bonding status. The environment-specific substitution tables have been derived from structural alignments in the HOMSTRAD database (http://www-cryst.bioc.cam.ac.uk/homstrad/). (2) Automatic selection of alignment algorithm with detailed structure-dependent gap penalties. FUGUE uses the global-local algorithm to align a sequence-structure pair when they greatly differ in length and uses the global algorithm in other eases. The gap penalty at each position of the structure is determined according to its solvent accessibility, its position relative to the secondary structure elements (SSEs) and the conservation of the SSEs. (3) Combined information from both multiple sequences and multiple structures. FUGUE is designed to align multiple sequences against multiple structures to enrich the conservation/variation information. We demonstrate that the combination of these three key features implemented in FUGUE improves both homology recognition performance and alignment accuracy. (C) 2001 Academic Press.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 65 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
  • [3] [Anonymous], 1978, Atlas of protein sequence and structure
  • [4] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [5] PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES
    BERNSTEIN, FC
    KOETZLE, TF
    WILLIAMS, GJB
    MEYER, EF
    BRICE, MD
    RODGERS, JR
    KENNARD, O
    SHIMANOUCHI, T
    TASUMI, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) : 535 - 542
  • [6] KNOWLEDGE-BASED PREDICTION OF PROTEIN STRUCTURES AND THE DESIGN OF NOVEL MOLECULES
    BLUNDELL, TL
    SIBANDA, BL
    STERNBERG, MJE
    THORNTON, JM
    [J]. NATURE, 1987, 326 (6111) : 347 - 352
  • [7] Burke DF, 1999, PROTEINS, P55
  • [8] THE RELATION BETWEEN THE DIVERGENCE OF SEQUENCE AND STRUCTURE IN PROTEINS
    CHOTHIA, C
    LESK, AM
    [J]. EMBO JOURNAL, 1986, 5 (04) : 823 - 826
  • [9] PREDICTION OF PROTEIN CONFORMATION
    CHOU, PY
    FASMAN, GD
    [J]. BIOCHEMISTRY, 1974, 13 (02) : 222 - 245
  • [10] COMPARISON OF THE PREDICTED MODEL OF ALPHA-LYTIC PROTEASE WITH THE X-RAY STRUCTURE
    DELBAERE, LTJ
    BRAYER, GD
    JAMES, MNG
    [J]. NATURE, 1979, 279 (5709) : 165 - 168