We examine the potential global risk of increasing surface ozone (O-3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O-3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O-3 precursor emissions in 2030. We use simulated hourly O-3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O-3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O-3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O-3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD2000 annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O-3 pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O-3 concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation. (C) 2011 Elsevier Ltd. All rights reserved.