Promise and Perils of Big Data and Artificial Intelligence in Clinical Medicine and Biomedical Research

被引:22
作者
Rodriguez, Fatima [1 ,2 ]
Scheinker, David [3 ]
Harrington, Robert A. [1 ,2 ]
机构
[1] Stanford Univ, Cardiovasc Inst, Div Cardiovasc Med, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
关键词
artificial intelligence; biomedical research; delivery of health care; machine learning; precision medicine; CLASSIFICATION; MORTALITY; CANCER;
D O I
10.1161/CIRCRESAHA.118.314119
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The widespread growth of big data and artificial intelligence (AI) in industry offers a preview of their promise and peril in medicine and biomedical research. This viewpoint summarizes valuable lessons from other industries, promising recent developments in health care and ideas for moving forward.
引用
收藏
页码:1282 / 1284
页数:3
相关论文
共 13 条
[1]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[2]   Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning [J].
Betancur, Julian ;
Otaki, Yuka ;
Motwani, Manish ;
Fish, Mathews B. ;
Lemley, Mark ;
Dey, Damini ;
Gransar, Heidi ;
Tamarappoo, Balaji ;
Germano, Guido ;
Sharir, Tali ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (07) :1000-1009
[3]  
Castelvecchi D, 2016, NATURE, V538, P21, DOI [10.1038/nature.2016.20491, 10.1038/538020a]
[4]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[5]   Reimagining Clinical Documentation With Artificial Intelligence [J].
Lin, Steven Y. ;
Shanafelt, Tait D. ;
Asch, Steven M. .
MAYO CLINIC PROCEEDINGS, 2018, 93 (05) :563-565
[6]   A 'Green Button' For Using Aggregate Patient Data At The Point Of Care [J].
Longhurst, Christopher A. ;
Harrington, Robert A. ;
Shah, Nigam H. .
HEALTH AFFAIRS, 2014, 33 (07) :1229-1235
[7]   Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm [J].
Monsalve-Torra, Ana ;
Ruiz-Fernandez, Daniel ;
Marin-Alonso, Oscar ;
Soriano-Paya, Antonio ;
Camacho-Mackenzie, Jaime ;
Carreno-Jaimes, Marisol .
JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 62 :195-201
[8]   Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning [J].
Poplin, Ryan ;
Varadarajan, Avinash V. ;
Blumer, Katy ;
Liu, Yun ;
McConnell, Michael V. ;
Corrado, Greg S. ;
Peng, Lily ;
Webster, Dale R. .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (03) :158-164
[9]   The use of machine learning for the identification of peripheral artery disease and future mortality risk [J].
Ross, Elsie Gyang ;
Shah, Nigam H. ;
Dalman, Ronald L. ;
Nead, Kevin T. ;
Cooke, John P. ;
Leeper, Nicholas J. .
JOURNAL OF VASCULAR SURGERY, 2016, 64 (05) :1515-+
[10]   Breast cancer classification and prognosis based on gene expression profiles from a population-based study [J].
Sotiriou, C ;
Neo, SY ;
McShane, LM ;
Korn, EL ;
Long, PM ;
Jazaeri, A ;
Martiat, P ;
Fox, SB ;
Harris, AL ;
Liu, ET .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10393-10398