Integrative analysis of genomic aberrations associated with prostate cancer progression

被引:97
作者
Kim, Jung H.
Dhanasekaran, Saravana M.
Mehra, Rohit
Tomlins, Scott A.
Gu, Wenjuan
Yu, Jianjun
Kumar-Sinha, Chandan
Cao, Xuhong
Dash, Atreya
Wang', Lei
Ghosh, Debashis
Shedden, Kerby
Montie, James E.
Rubin, Mark A.
Pienta, Kenneth J.
Shah, Rajal B.
Chinnaiyan, Arul M. [1 ]
机构
[1] Univ Michigan, Sch Med, Michigan Ctr Translat Pathol, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI USA
[3] Univ Michigan, Sch Med, Dept Biostat, Ann Arbor, MI USA
[4] Univ Michigan, Sch Med, Dept Stat, Ann Arbor, MI USA
[5] Univ Michigan, Sch Med, Ctr Comprehens Canc, Program Bioinformat, Ann Arbor, MI USA
[6] Tata Mem Hosp, Adv Ctr Treatment Res & Educ Canc, Bombay, Maharashtra, India
[7] Mem Sloan Kettering Canc Ctr, New York, NY 10021 USA
[8] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dana Farber Canc Inst,Dept Pathol, Boston, MA 02115 USA
关键词
D O I
10.1158/0008-5472.CAN-07-1297
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Integrative analysis of genomic aberrations in the context of trancriptomic alterations will lead to a more comprehensive perspective on prostate cancer progression. Genome-wide copy number changes were monitored using array comparative genomic hybridization of laser-capture microdissected prostate cancer samples spanning stages of prostate cancer progression, including precursor lesions, clinically localized disease, and metastatic disease. A total of 62 specific cell populations from 38 patients were profiled. Minimal common regions (MCR) of alterations were defined for each sample type, and metastatic samples displayed the most number of alterations. Clinically localized prostate cancer samples with high Gleason grade resembled metastatic samples with respect to the size of altered regions and number of affected genes. A total of 9 out of 13 MCRs in the putative precursor lesion, high-grade prostatic intraepithelial neoplasia (PIN), showed an overlap with prostate cancer cases (amplifications in 3q29, 5q31.3-q32, 6q27, and 8q24.3 and deletions in 6q22.31, 16p 12.2, 17q21.2, and 17q21.31), whereas postatrophic hyperplasia (PAH) did not exhibit this overlap. Interestingly, prostate cancers that do not overexpress ETS family members (i.e., gene fusion-negative prostate cancers) harbor differential aberrations in 1q23, 6q16, 6q21, 10q23, and 10q24. Integrative analysis with matched mRNA profiles identified genetic alterations in several proposed candidate genes implicated in prostate cancer progression.
引用
收藏
页码:8229 / 8239
页数:11
相关论文
共 48 条
[1]   High-resolution characterization of the pancreatic adenocarcinoma genome [J].
Aguirre, AJ ;
Brennan, C ;
Bailey, G ;
Sinha, R ;
Feng, B ;
Leo, C ;
Zhang, YY ;
Zhang, J ;
Gans, JD ;
Bardeesy, N ;
Cauwels, C ;
Cordon-Cardo, C ;
Redston, MS ;
DePinho, RA ;
Chin, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (24) :9067-9072
[2]   Chromosome aberrations in solid tumors [J].
Albertson, DG ;
Collins, C ;
McCormick, F ;
Gray, JW .
NATURE GENETICS, 2003, 34 (04) :369-376
[3]   Resolution of genotypic heterogeneity in prostate tumors using polymerase chain reaction and comparative genomic hybridization on microdissected carcinoma and prostatic intraepithelial neoplasia foci [J].
Beheshti, B ;
Vukovic, B ;
Marrano, P ;
Squire, JA ;
Park, PC .
CANCER GENETICS AND CYTOGENETICS, 2002, 137 (01) :15-22
[4]   The tumor protein D52 family: many pieces, many puzzles [J].
Boutros, R ;
Fanayan, S ;
Shehata, M ;
Byrne, JA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 325 (04) :1115-1121
[5]   Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer [J].
Byrne, JA ;
Balleine, RL ;
Fejzo, MS ;
Mercieca, J ;
Chiew, YE ;
Livnat, Y ;
St Heaps, L ;
Peters, GB ;
Byth, K ;
Karlan, BY ;
Slamon, DJ ;
Harnett, P ;
Defazio, A .
INTERNATIONAL JOURNAL OF CANCER, 2005, 117 (06) :1049-1054
[6]   Genetic instability and darwinian selection in tumours (Reprinted from Trends in Biochemical Science, vol 12, Dec., 1999) [J].
Cahill, DP ;
Kinzler, KW ;
Vogelstein, B ;
Lengauer, C .
TRENDS IN CELL BIOLOGY, 1999, 9 (12) :M57-M60
[7]   High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients [J].
Carrasco, DR ;
Tonon, G ;
Huang, YS ;
Zhang, YY ;
Sinha, R ;
Bin, F ;
Stewart, JP ;
Zhan, FG ;
Khatry, D ;
Protopopova, M ;
Protopopov, A ;
Sukhdeo, K ;
Hanamura, I ;
Stephens, O ;
Barlogie, B ;
Anderson, KC ;
Chin, L ;
Shaughnessy, JD ;
Brennan, C ;
DePinho, RA .
CANCER CELL, 2006, 9 (04) :313-325
[8]   The impact of genomic alterations on the transcriptome: a prostate cancer cell line case study [J].
Chaudhary, J. ;
Schmidt, M. .
CHROMOSOME RESEARCH, 2006, 14 (05) :567-586
[9]   Array-based comparative genomic hybridization and copy number variation in cancer research [J].
Cho, E. K. ;
Tchinda, J. ;
Freeman, J. L. ;
Chung, Y. -J. ;
Cai, W. W. ;
Lee, C. .
CYTOGENETIC AND GENOME RESEARCH, 2006, 115 (3-4) :262-272
[10]   Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays [J].
Clark, J ;
Edwards, S ;
Feber, A ;
Flohr, P ;
John, M ;
Giddings, I ;
Crossland, S ;
Stratton, MR ;
Wooster, R ;
Campbell, C ;
Cooper, CS .
ONCOGENE, 2003, 22 (08) :1247-1252